3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-26 14:23:38 +01:00
dft_tools/doc/license/collaboration.rst

72 lines
2.7 KiB
ReStructuredText
Raw Normal View History

.. index:: TRIQS collaboration
.. _collaboration:
The TRIQS collaboration
========================
TRIQS core
----------
Basic components and python libraries
.....................................
**Main developers**: M. Ferrero, O. Parcollet
**Contributors**: L. Boehnke (Legendre Green's functions)
C++ ``triqs::arrays`` library
.............................
**Developer**: O. Parcollet
Quantum impurity solvers
-------------------------
Continuous-time quantum Monte Carlo
...................................
The CTQMC algorithm implemented in TRIQS is based on a hybridization expansion
of the partition function as described in references [#ctqmc1]_ and [#ctqmc2]_.
The computation of the imaginary-time Green's function has been improved with
the use of Legendre polynomials following reference [#ctqmc3]_.
**Main developers**: M. Ferrero, O. Parcollet
**Contributors**: L. Boehnke (measures in Legendre basis)
**Related papers**:
.. [#ctqmc1] `P. Werner, A. Comanac, L. de Medici, M. Troyer, and A. J. Millis, Phys. Rev. Lett. 97, 076405 (2006) <http://link.aps.org/doi/10.1103/PhysRevLett.97.076405>`_ (:download:`bibtex file <ctqmc2.bib>`)
.. [#ctqmc2] `P. Werner and A. J. Millis, Phys. Rev. B 74, 155107 (2006) <http://link.aps.org/doi/10.1103/PhysRevB.74.155107>`_ (:download:`bibtex file <ctqmc3.bib>`)
.. [#ctqmc3] `L. Boehnke, H. Hafermann, M. Ferrero, F. Lechermann, and O. Parcollet, Phys. Rev. B 84, 075145 (2011) <http://link.aps.org/doi/10.1103/PhysRevB.84.075145>`_ (:download:`bibtex file <ctqmc1.bib>`)
Hubbard I
..........
**Main developer**: L. Pourovskii
Wien2TRIQS
-----------------
The developement of an interface between the Wien2k electronic structure
package and TRIQS has been motivated by a scientific collaboration between the
research groups of Antoine Georges, Silke Biermann (Ecole Polytechnique),
Olivier Parcollet (CEA Saclay). A first step has been the definition of the
framework and the construction of the projective Wannier functions as input for
the DMFT calculations [#wien2k1]_. This has been followed by the introduction
of full charge self-consistency [#wien2k2]_, necessary for total energy
calculations.
**Developers**: M. Aichhorn, L. Pourovskii, V. Vildosola, C. Martins
**Related papers**:
.. [#wien2k1] `M. Aichhorn, L. Pourovskii, V. Vildosola, M. Ferrero, O. Parcollet, T. Miyake, A. Georges, and S. Biermann, Phys. Rev. B 80, 085101 (2009) <http://link.aps.org/doi/10.1103/PhysRevB.80.085101>`_ (:download:`bibtex file <wien2k1.bib>`)
.. [#wien2k2] `M. Aichhorn, L. Pourovskii, and A. Georges, Phys. Rev. B 84, 054529 (2011) <http://link.aps.org/doi/10.1103/PhysRevB.84.054529>`_ (:download:`bibtex file <wien2k2.bib>`)