3
0
mirror of https://github.com/triqs/dft_tools synced 2024-11-01 11:43:47 +01:00
dft_tools/test/triqs/arrays/group_indices.cpp

64 lines
1.5 KiB
C++
Raw Normal View History

#include "./common.hpp"
#include <triqs/arrays/indexmaps/cuboid/group_indices.hpp>
#include <triqs/arrays/matrix.hpp>
#include <triqs/arrays/asserts.hpp>
namespace tqa=triqs::arrays;
namespace tql=triqs::clef;
namespace mpl=boost::mpl;
using tqa::m_index;
template<triqs::ull_t FLAG> void test() {
tql::placeholder<0> i_;
tql::placeholder<1> j_;
tql::placeholder<2> k_;
tql::placeholder<3> l_;
{ // a simple test
tqa::array<int,4,FLAG> A(2,2,2,2);
A(i_,j_,k_,l_) << i_ + 10*j_ + 100*k_ + 1000*l_;
TEST(A);
TEST( group_indices(A, m_index<0,1>(), m_index<2,3>()));
}
{ // more complex : inversing a tensor product of matrices...
tqa::matrix<double,FLAG> B(2,2), C(3,3), Binv, Cinv;
C(i_,j_) << 1.7 /( 3.4*i_ - 2.3*j_ + 1) ;
B(i_,j_) << 2*i_ + j_;
TEST(B); TEST(C);
Binv = inverse(B);
Cinv = inverse(C);
TEST(Binv); TEST(Cinv);
tqa::array<double,4,FLAG> A(2,3,2,3);
A(i_,j_,k_,l_) << B(i_,k_) * C(j_,l_);
TEST(A);
tqa::matrix_view<double,FLAG> M = group_indices (A, m_index<0,1>() , m_index<2,3>() );
M = inverse(M);
// checking
tqa::array<double,4,FLAG> R(A.shape());
R(i_,j_,k_,l_) << Binv(i_,k_) * Cinv(j_,l_);
TEST(R);
TEST(A);
assert_all_close(R,A,5.e-15);
//TEST(make_array(R-A));
//TEST( max(abs(R-A)));
}
}
int main () {
test<TRAVERSAL_ORDER_FORTRAN>();
test<TRAVERSAL_ORDER_C>();
// an alternative syntax ? Why to use the npl here ??
//auto V = tqa::group_indices( A(i_,j_,k_,l_), m_index(i_,j_), m_index(k_,l_));
}