3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-27 06:43:40 +01:00
dft_tools/pytriqs/dos/hilbert_transform.py

180 lines
7.3 KiB
Python
Raw Normal View History

################################################################################
#
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
#
# Copyright (C) 2011 by M. Ferrero, O. Parcollet
#
# TRIQS is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
#
################################################################################
from pytriqs.gf.local import *
import types, string, inspect, itertools
from operator import isSequenceType
from pytriqs.dos import DOS, DOSFromFunction
import pytriqs.utility.mpi as mpi
import numpy
class HilbertTransform :
r"""
Computes the Hilbert Transform from a DOS object
.. math::
\int_{-\infty}^\infty d \epsilon \rho(\epsilon) \Bigl( (\omega + \mu +
I\eta)\mathbf{1} - \hat\varepsilon(\epsilon) - \text{field} - \Sigma(\epsilon)
\Bigr)^{-1}
"""
def __init__(self, rho):
"""
:param rho: a DOS object.
"""
self.dos = rho
assert isinstance(rho, DOS), "See Doc. rho must be a DOS"
self.__normalize()
#-------------------------------------------------------------
def __reduce__(self) :
return self.__class__, (self.rho)
#-------------------------------------------------------------
def __normalize(self):
# normalisation. dos is not the value of the function, is the weight of the integrals
R = numpy.array(self.dos.rho, copy=True)
self.rho_for_sum = R
eps = self.dos.eps
R[0] *= (eps[1] - eps[0])
R[-1] *= (eps[-1] - eps[-2])
for i in xrange(1, eps.shape[0] - 1) :
R[i] *= (eps[i+1] - eps[i])/2+(eps[i] - eps[i-1])/2
R /= numpy.sum(R)
#-------------------------------------------------------------
def __call__ (self, Sigma, mu=0, eta=0, field=None, epsilon_hat=None, result=None,
n_points_integral=None, test_convergence=None):
r"""
Compute the Hilbert Transform
Parameters
-----------
mu : float
eta : float
Sigma : a GFBloc or a function epsilon-> GFBloc
field : anything that can added to the GFBloc Sigma, e.g. :
* an Array_with_GFBloc_Indices (same size as Sigma)
* a GBloc
epsilon_hat : a function that takes a 1d array eps[i] and returns 3d-array eps[i, :, :]
where the :, : has the matrix structure of Sigma. Default : eps[i] * Identity_Matrix
Used only when DOS is a DOSFromFunction :
n_points_integral : How many points to use. If None, use the Npts of construction
test_convergence : If defined, it will refine the grid until CV is reached
starting from n_points_integral and multiplying by 2
Returns
--------
Returns the result. If provided, use result to compute the result locally.
"""
# we suppose here that self.eps, self.rho_for_sum such that
# H(z) = \sum_i self.rho_for_sum[i] * (z- self.eps[i])^-1
# Check Sigma and result
assert Sigma.N1==Sigma.N2, "Sigma must be square"
if result :
assert result.N1 == Sigma.N1 and result.N2 == Sigma.N2, "Size of result and Sigma mismatch"
else :
result = Sigma.copy()
if not( isinstance (self.dos, DOSFromFunction)):
assert n_points_integral==None and test_convergence == None, " Those parameters can only be used with an dos_from_function"
if field !=None :
try :
result += field
except :
assert 0, "field can not be added to the Green function blocks !. Cf Doc"
def HT(res) :
# First compute the eps_hat array
eps_hat = epsilon_hat(self.dos.eps) if epsilon_hat else numpy.array( [ x* numpy.identity (Sigma.N1) for x in self.dos.eps] )
assert eps_hat.shape[0] == self.dos.eps.shape[0], "epsilon_hat function behaves incorrectly"
assert eps_hat.shape[1] == eps_hat.shape[2], "epsilon_hat function behaves incorrectly (result not a square matrix)"
assert Sigma.N1 == eps_hat.shape[1], "Size of Sigma and of epsilon_hat mismatch"
res.zero()
Sigma_fnt = callable(Sigma)
if Sigma_fnt : assert len(inspect.getargspec(Sigma)[0]) ==1, "Sigma function is not of the correct type. See Documentation"
# Perform the sum over eps[i]
tmp, tmp2 = res.copy(), res.copy()
tmp <<= iOmega_n + mu + eta * 1j
if not(Sigma_fnt) :
tmp -= Sigma
if field != None : tmp -= field
# I slice all the arrays on the node. Cf reduce operation below.
for d, e_h, e in itertools.izip (*[mpi.slice_array(A) for A in [self.rho_for_sum, eps_hat, self.dos.eps]]):
tmp2.copy_from(tmp)
tmp2 -= e_h
if Sigma_fnt : tmp2 -= Sigma(e)
tmp2.invert()
tmp2 *= d
res += tmp2
# sum the res GF of all nodes and returns the results on all nodes...
# Cf Boost.mpi.python, collective communicator for documentation.
# The point is that res is pickable, hence can be transmitted between nodes without further code...
res <<= mpi.all_reduce(mpi.world, res, lambda x, y : x+y)
mpi.barrier()
# END of HT
def test_distance(G1, G2, dist) :
def f(G1, G2) :
dS = max(abs(G1.data - G2.data).flatten())
aS = max(abs(G1.data).flatten())
return dS <= aS*dist
#return reduce(lambda x, y : x and y, [f(g1, g2) for (i1, g1), (i2, g2) in izip(G1, G2)])
return f(G1, G2) # for block function, the previous one is for GF functions
if isinstance (self.dos, DOSFromFunction):
if not(n_points_integral) : # if not defined, use the defaults given at construction of the dos
n_points_integral= len(self.dos.eps)
else:
self.dos._DOS__f(n_points_integral)
self.__normalize()
HT(result)
nloop, test = 1, 0
while test_convergence and nloop < 10 and (nloop == 1 or test > test_convergence):
if nloop>1 :
self.dos._DOS__f(n_points_integral)
self.__normalize()
result_old = result.copy()
result = DOS.HilbertTransform(self, Sigma, mu, eta, epsilon_hat, result)
test = test_distance(result, result_old, test_convergence)
n_points_integral *=2
else : # Ordinary DOS
HT(result)
return result