mirror of
https://github.com/triqs/dft_tools
synced 2025-01-01 00:55:48 +01:00
27 lines
873 B
Python
27 lines
873 B
Python
|
from pytriqs.plot.mpl_interface import oplot
|
||
|
from pytriqs.gf.local import GfImFreq, Omega, inverse
|
||
|
|
||
|
g = GfImFreq(indices = [0], beta = 300, n_points = 1000, name = "g")
|
||
|
g <<= inverse( Omega + 0.5 )
|
||
|
|
||
|
# the data we want to fit...
|
||
|
# The green function for omega \in [0,0.2]
|
||
|
X,Y = g.x_data_view (x_window = (0,0.2), flatten_y = True )
|
||
|
|
||
|
from pytriqs.fit import Fit, linear, quadratic
|
||
|
|
||
|
fitl = Fit ( X,Y.imag, linear )
|
||
|
fitq = Fit ( X,Y.imag, quadratic )
|
||
|
|
||
|
oplot (g, '-o', x_window = (0,5) )
|
||
|
oplot (fitl , '-x', x_window = (0,0.5) )
|
||
|
oplot (fitq , '-x', x_window = (0,1) )
|
||
|
|
||
|
# a bit more complex, we want to fit with a one fermion level ....
|
||
|
# Cf the definition of linear and quadratic in the lib
|
||
|
one_fermion_level = lambda X, a,b : 1/(a * X *1j + b), r"${1}/(%f x + %f)$" , (1,1)
|
||
|
|
||
|
fit1 = Fit ( X,Y, one_fermion_level )
|
||
|
oplot (fit1 , '-x', x_window = (0,3) )
|
||
|
|