3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-13 06:28:21 +01:00
dft_tools/doc/tutorials/python/aim.py

43 lines
1.9 KiB
Python
Raw Normal View History

from pytriqs.gf.local import *
from pytriqs.operators import *
from pytriqs.applications.impurity_solvers.cthyb_matrix import Solver
D, V, U = 1.0, 0.2, 4.0
e_f, Beta = -U/2.0, 50
# The impurity solver
S = Solver(Beta = Beta, # inverse temperature
GFstruct = [ ('up',[1]), ('down',[1]) ], # Structure of the Green's function
H_Local = U * N('up',1) * N('down',1), # Local Hamiltonian
Quantum_Numbers = { # Quantum Numbers
'Nup' : N('up',1), # (operators commuting with H_Local)
'Ndown' : N('down',1) },
N_Cycles = 500000, # Number of QMC cycles
Length_Cycle = 200, # Length of one cycle
N_Warmup_Cycles = 10000, # Warmup cycles
N_Legendre_Coeffs = 50, # Number of Legendre coefficients
Random_Generator_Name = 'mt19937', # Name of the random number generator
Use_Segment_Picture = True, # Use the segment picture
Measured_Operators = { # Operators to be averaged
'Nimp' : N('up',1)+N('down',1) },
Global_Moves = [ # Global move in the QMC
(0.05, lambda (a,alpha,dag) : ( {'up':'down','down':'up'}[a],alpha,dag ) ) ],
)
# Initialize the non-interacting Green's function S.G0
for spin, g0 in S.G0 :
g0 <<= inverse( iOmega_n - e_f - V**2 * Wilson(D) )
# Run the solver. The result will be in S.G
S.Solve()
# Save the results in an hdf5 file (only on the master node)
from pytriqs.archive import HDFArchive
import pytriqs.utility.mpi as mpi
if mpi.is_master_node():
Results = HDFArchive("solution.h5",'w')
Results["G"] = S.G
Results["Gl"] = S.G_Legendre
Results["Nimp"] = S.Measured_Operators_Results['Nimp']