mirror of
https://github.com/triqs/dft_tools
synced 2025-01-03 18:16:03 +01:00
361 lines
14 KiB
ReStructuredText
361 lines
14 KiB
ReStructuredText
|
.. highlight:: c
|
||
|
|
||
|
array and array_view
|
||
|
============================
|
||
|
|
||
|
array and array_view are the class for standard d-dimensional cuboid array
|
||
|
and the corresponding view.
|
||
|
|
||
|
Template parameters
|
||
|
----------------------------
|
||
|
|
||
|
* The class has four template parameters (same for array_view).
|
||
|
|
||
|
.. code-block:: c
|
||
|
|
||
|
array<ValueType, // The type of the element of the array
|
||
|
Rank, // int : the rank of the array
|
||
|
IndexOrderTag=Tag::C, // The ordering in memory : can be Tag::C, Tag::Fortran or a permutation
|
||
|
StorageTag=Tag::shared_block // The storage : Tag::shared_block or Tag::numpy
|
||
|
>
|
||
|
|
||
|
|
||
|
============================ ========================== =======================================
|
||
|
Template parameter Access in the class Meaning
|
||
|
============================ ========================== =======================================
|
||
|
ValueType value_type The type of the element of the array
|
||
|
Rank rank The rank of the array *[int]*
|
||
|
IndexOrderTag indexmap_type The ordering in memory : can be Tag::C, Tag::Fortran or a permutation
|
||
|
StorageTag storage_type The storage : Tag::shared_block or Tag::numpy
|
||
|
============================ ========================== =======================================
|
||
|
|
||
|
|
||
|
* Various IndexOrderTag are possible :
|
||
|
|
||
|
================= ====================================================================================================
|
||
|
IndexOrderTag Meaning
|
||
|
================= ====================================================================================================
|
||
|
Tag::C C-style order *[default]*
|
||
|
Tag::Fortran Fortran-style order
|
||
|
P - P is a permutation
|
||
|
- Determined by a permutation P at compile time. Explain here the permutation, the convention.
|
||
|
================= ====================================================================================================
|
||
|
|
||
|
|
||
|
* Two possible storages :
|
||
|
|
||
|
================== ============================================================================
|
||
|
StorageTag Meaning
|
||
|
================== ============================================================================
|
||
|
Tag::shared_block a (shared_ptr on a) C++ block *[default]*
|
||
|
Tag::numpy stored in a numpy array, in which case the array is also a numpy array
|
||
|
and read numpy, be returned as numpy, sliced into a numpy, etc...
|
||
|
================== ============================================================================
|
||
|
|
||
|
|
||
|
.. _array_constructors:
|
||
|
|
||
|
Constructors
|
||
|
-----------------
|
||
|
|
||
|
Intentionally, array and array_view have only a few constructors :
|
||
|
|
||
|
========================================== ===========================================================================================
|
||
|
Constructors of array Comments
|
||
|
========================================== ===========================================================================================
|
||
|
array() - empty array of size 0
|
||
|
array(size_t, ...., size_t) - from the dimensions
|
||
|
array(cuboid_domain<rank> const &) - a new array with the corresponding cuboid
|
||
|
array(const array &) - copy construction
|
||
|
array(const T & X) - Type T models the :ref:`HasImmutableArrayInterface` concept.
|
||
|
- X must have the appropriate domain (checked at compile time).
|
||
|
- Enabled iif has_immutable_array_interface<T>::value == true.
|
||
|
- Constructs a new array of domain X.domain() and fills it with evaluation of X.
|
||
|
========================================== ===========================================================================================
|
||
|
|
||
|
====================================================================== =======================================================================================
|
||
|
Constructors of array_view Comments
|
||
|
====================================================================== =======================================================================================
|
||
|
array_view(indexmap_type const & I, S_type const &) from a couple of indexmap I and storage of type S_type
|
||
|
array_view(const T & X) T is any type such that X.indexmap() and X.storage(). Models ISP ...
|
||
|
====================================================================== =======================================================================================
|
||
|
|
||
|
array_view are typically constructed by slicing (Cf below).
|
||
|
|
||
|
* Examples ::
|
||
|
|
||
|
array<int,2> A(10,2);
|
||
|
array<int,2,Tag::Fortran> Af (2,2);
|
||
|
|
||
|
//Higher dim, custom order :
|
||
|
array<long, 3, Permutations::permutation<2,1,0> > A0 (2,3,4);
|
||
|
array<long, 3, Permutations::permutation<0,1,2> > A1 (2,3,4);
|
||
|
array<long, 3, Permutations::permutation<1,0,2> > A2 (2,3,4);
|
||
|
array<long, 3 > A3 (2,3,4);
|
||
|
array<long, 3, Tag::Fortran > A4 (2,3,4);
|
||
|
|
||
|
|
||
|
Access to data, domain, simple evaluation, ...
|
||
|
--------------------------------------------------------
|
||
|
|
||
|
array, array_view, matrix, matrix_view, vector, vector_view model HasImmutableArrayInterface.
|
||
|
|
||
|
|
||
|
Assignment & Copy
|
||
|
--------------------
|
||
|
|
||
|
Every classes comes in two flavors: C and C_view (with C = array, matrix, vector, etc...).
|
||
|
These two flavors differ in the way they handle their data in construction, copy construction, assignement.
|
||
|
Basically, C owns its data, while C_view if only a view.
|
||
|
|
||
|
array, matrix, vector
|
||
|
^^^^^^^^^^^^^^^^^^^^^^^^
|
||
|
|
||
|
They own their data. In many aspects, they are similar to like std::vector.
|
||
|
|
||
|
* The data are contiguous in memory.
|
||
|
* Constructors and copy constructors all create a new memory block. If needed, they
|
||
|
make a *true* copy of the data.
|
||
|
* The assignment operator may create a new Storage if size do not match.
|
||
|
* As a result, /pointers to the data/ and reference to the storage are invalid after assignment.
|
||
|
* They can be resized, again invalidating all references.
|
||
|
|
||
|
array_view, matrix_view, vector_view
|
||
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||
|
|
||
|
These classes do not own their data, but only present a view of them.
|
||
|
|
||
|
* The data may not be contiguous in memory (e.g. if the view is the result of a slice).
|
||
|
* Constructors only make another view of the data.
|
||
|
* They *never* copy data, so they are quite quick.
|
||
|
In particular, copy constructor makes shallow copy (i.e. return another view).
|
||
|
* The assignement operator just copy data into the view. Behaviour is undefined if the
|
||
|
size of the view is too small (define the macro ARRAY_CHECK for dynamical debugging checks).
|
||
|
* Pointers to data taken from the views are still valid after assignement.
|
||
|
* Views can be not be resized.
|
||
|
|
||
|
.. warning:: **Memory management**
|
||
|
|
||
|
Views carry a reference to the memory block they view,
|
||
|
which guarantees that memory will not be
|
||
|
dellocated before the destruction of the view.
|
||
|
Indeed, the Storage types implement incorporated a reference counting mechanism,
|
||
|
either using boost::shared_ptr for the C++ arrays, or using the python references
|
||
|
for the numpy storage.
|
||
|
The memory block will be dellocated when its array and all array_view
|
||
|
pointing to it or to a portion of it will be destroyed, and only at that moment.
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
array<int,Matrix> *A = new array<int,Matrix> (Matrix(2,3)); // create an array A
|
||
|
array_view<int, Matrix> B(*A); // making a view
|
||
|
delete A; // A is gone...
|
||
|
cout<<B<<endl; // ok, but B (and the data) is still alive
|
||
|
|
||
|
Operator =
|
||
|
------------
|
||
|
|
||
|
array, matrix, vector
|
||
|
^^^^^^^^^^^^^^^^^^^^^^^^
|
||
|
|
||
|
//.. cpp:member::
|
||
|
template<typename RHS> array & operator=(const RHS & X);
|
||
|
|
||
|
* RHS models HasImmutableArrayInterface.
|
||
|
* array is first resized to have a domain X.domain(), and then filled
|
||
|
with the evaluation of X (e.g. a copy if X is an array, computing the value if X is an expression).
|
||
|
|
||
|
|
||
|
array_view, matrix_view, vector_view
|
||
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||
|
|
||
|
//.. cpp:function::
|
||
|
template<typename RHS> array_view & operator=(const RHS & X);
|
||
|
|
||
|
* RHS models HasImmutableArrayInterface [ or less ? : RHS can be evaluated in the domain_type::value_type, no domain needed.].
|
||
|
* Dimension of the view must match or behaviour is undefined.
|
||
|
|
||
|
Iterators and interaction with STL containers and algorithms
|
||
|
----------------------------------------------------------------
|
||
|
|
||
|
STL compliant iterators, hence STL algorithms work...
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
array<long,2> A (2,3);
|
||
|
|
||
|
// first print the index generator
|
||
|
for (array<long,2>::indexmap_type::domain_type::generator it = A.indexmap().domain().begin(); !it.at_end(); ++it)
|
||
|
cout<<" "<<*it<<endl;
|
||
|
|
||
|
//A(i,j) = i + 10*j
|
||
|
for (array<long,2>::iterator it = A.begin(); !it.at_end(); ++it)
|
||
|
{ *it =it.indices().get<0>() + 10 *it.indices().get<1>() ; }
|
||
|
|
||
|
int u=0;
|
||
|
for (array<long,2>::iterator it = A.begin(); !it.at_end(); ++it,++u) { *it =u; }
|
||
|
|
||
|
array<long,2> A (2,3);
|
||
|
std::vector<array<long,2> > VV; VV.push_back(A);
|
||
|
map<string, array<long,2> > MAP; MAP["1"] = A;
|
||
|
|
||
|
// Trying to put a vector in an array
|
||
|
std::vector<int> V (10);
|
||
|
array<int,1 > B(V.size()), C(V.size());
|
||
|
for (unsigned int i =0; i<10; ++i) V[i] = 10+i;
|
||
|
|
||
|
std::copy(V.begin(),V.end(),B.begin());
|
||
|
std::copy(B.begin(),B.end(),V.begin());
|
||
|
cout<<" Number of elements <25 : "<< std::count_if(B.begin(), B.end(),te)<<endl;
|
||
|
cout<<" max(B) "<< *std::max_element(B.begin(),B.end())<<endl;
|
||
|
std::replace_if (B.begin(), B.end(), te, 0);
|
||
|
std::swap(B,C);
|
||
|
|
||
|
|
||
|
Slicing (or partial view)
|
||
|
-------------------------------------------------
|
||
|
|
||
|
Slicing or partial view consists in presenting a view of a sub-part of the array, e.g.
|
||
|
Examples::
|
||
|
|
||
|
array<long,2> A (2,3);
|
||
|
array_view<long,1> SL( A(range(0,2),0));
|
||
|
array_view<long,1> SL2( A(1,range(0,2)));
|
||
|
|
||
|
|
||
|
It is the standard way to produce a view.
|
||
|
|
||
|
NB :
|
||
|
|
||
|
* we use here the python convention: range(0,3) is 0:3, i.e. 0,1,2 NOT 0,1,2,3.
|
||
|
* Todo : in fact we should wrap the range to python::slice for interoperability with python.
|
||
|
|
||
|
Serialization
|
||
|
-------------------------------------------------
|
||
|
|
||
|
* Boost.serialization
|
||
|
* Boost.mpi
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
array<long,2> A (2,2), B(2,2),C(2,2);
|
||
|
boost::mpi::reduce (world, A,C, std::plus<array<long,2> >(),0);
|
||
|
|
||
|
|
||
|
* HDF5 (ALPS), eg.
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
array<long,2> A (2,3),B,vc;
|
||
|
array<long,2,Tag::Fortran> Af,Bf,vf;
|
||
|
|
||
|
alps::hdf5::oarchive ar1("data.h5");
|
||
|
ar1 << alps::make_pvp("Tableau", A);
|
||
|
ar1 << alps::make_pvp("Tableau2", Af);
|
||
|
ar1 << alps::make_pvp("Tableau_view", A(range(),range(1,3)));
|
||
|
|
||
|
alps::hdf5::iarchive ar2("data.h5");
|
||
|
ar2 >> alps::make_pvp("Tableau", B);
|
||
|
ar2 >> alps::make_pvp("Tableau", Bf);
|
||
|
ar2 >> alps::make_pvp("Tableau_view", vc);
|
||
|
ar2 >> alps::make_pvp("TableauC",C);
|
||
|
|
||
|
|
||
|
blas/lapack interface
|
||
|
-------------------------------------------------
|
||
|
|
||
|
* matrix, vector and their views are interfaced with blas/lapack, via boost::numerics::bindings.
|
||
|
* If needed (for a view), a temporary (and silent) copy is made to reorganize the
|
||
|
data before calling blas/lapack (impl: cache class).
|
||
|
Of course, performance is altered, but code is simple...
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
namespace blas = boost::numeric::bindings::blas;
|
||
|
namespace lapack = boost::numeric::bindings::lapack;
|
||
|
|
||
|
triqs_arrays::vector<std::complex<double> > V(5),V2(5);
|
||
|
triqs_arrays::vector <double> V3(2);
|
||
|
triqs_arrays::matrix<double,'F' > M1(2,2), M2(2,2), M3(2,2);
|
||
|
|
||
|
blas::axpy(2.0,V,V2);
|
||
|
blas::gemm(1.0,M1, M2, 1.0, M3);
|
||
|
blas::ger(1.0,V3,V3,M2);
|
||
|
|
||
|
// invert
|
||
|
triqs_arrays::vector <int> ipiv(2);
|
||
|
lapack::getrf(M1, ipiv);
|
||
|
lapack::getri(M1, ipiv);
|
||
|
|
||
|
Transparent use of python arrays
|
||
|
-------------------------------------------------
|
||
|
|
||
|
* If the storage is Tag::numpy, the memory block is allocated/viewed through the numpy interface.
|
||
|
* One can mix arrays with any storage in expression (they have the same concepts).
|
||
|
* boost python converters are enable for those arrays into numpy and their views [impl :broken for views].
|
||
|
|
||
|
|
||
|
Expression
|
||
|
-------------------------------------------------
|
||
|
|
||
|
Simple expressions are made using boost.proto.
|
||
|
Examples ::
|
||
|
|
||
|
array<long,2> A (2,2), B(2,2),C;
|
||
|
C= A + 2*B;
|
||
|
array<long,2> D( A+ 2*B);
|
||
|
|
||
|
// or even in C++0x :
|
||
|
auto e = A + 2*B; // expression, purely formal
|
||
|
array<long,2> D(e); // really makes the computation
|
||
|
cout<< e <<endl ; // prints the expression
|
||
|
cout<< e(1,2) <<endl ; // evaluates just at a point
|
||
|
cout<< e.domain() <<endl ; // just computes the domain
|
||
|
|
||
|
array<long,2> A (2,2), B(2,2),C(2,2);
|
||
|
C= A + 2*B;
|
||
|
C= std::plus<array<long,2> >()(A,B);
|
||
|
C = A + Transpose(B); // Transpose(X) returns a lazy object that models HasImmutableArrayInterface.
|
||
|
C = A + Transpose(B + B); // X can also be an expression...
|
||
|
C = Transpose(B); //
|
||
|
array<double,2> F( 0.5 * A); // Type promotion is automatic
|
||
|
|
||
|
// non square
|
||
|
array<long,2> R(2,3),Rt(3,2);
|
||
|
cout<<" R = "<< array<long,2>(Transpose(R)) <<endl;
|
||
|
|
||
|
// mapping any function
|
||
|
C = map_expr(&sqr,A);
|
||
|
cout<<" C = "<< map_expr(&sqr,A,"SQR")<<" = "<<C<<endl;
|
||
|
|
||
|
// matmul as expression Oi are 'C' or 'F'
|
||
|
matrix<double,O1> M1(2,2); matrix<double,O2> M2(2,2); matrix<double,O3> M3;
|
||
|
// The central instruction : note that matmul returns a lazy object
|
||
|
// that has ImmutableArray interface, and defines a specialized version assignment
|
||
|
// As a result this is equivalent to some matmul_with_lapack(M1,M2,M3) : there is NO intermediate copy.
|
||
|
M3 = matmul(M1,M2);
|
||
|
|
||
|
See expression.hpp.
|
||
|
At the moment, only +,-, * and / by scalar are implemented.
|
||
|
|
||
|
An expression models HasImmutableArrayInterface, i.e. :
|
||
|
|
||
|
* It has a domain (computed from the expression)
|
||
|
* It can be evaluated.
|
||
|
|
||
|
It is then easy to mix them with other objects,
|
||
|
that model the same concept. See e.g. expr2.cpp (map_expr) for examples.
|
||
|
|
||
|
|
||
|
* *Multiplication* :
|
||
|
not decided, since it is not the same for array or matrices.
|
||
|
Two choices :
|
||
|
|
||
|
* Do not add \* for array, matrices (use matmul e.g.) and allow mixing array, matrix
|
||
|
e.g. add an array<int,2> and a matrix <int>
|
||
|
|
||
|
* Add the \*, but then do different expression for array and matrix/vector,
|
||
|
then one can not mix them.
|
||
|
In that case, it is however trivial to say e.g. M + matrix_view<int>(A) if A is an array.
|
||
|
|