3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-26 22:33:48 +01:00
dft_tools/triqs/arrays/expression_template/matrix_algebra.hpp

154 lines
7.6 KiB
C++
Raw Normal View History

/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2011-2013 by O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#ifndef TRIQS_ARRAYS_EXPRESSION_MATRIX_ALGEBRA_H
#define TRIQS_ARRAYS_EXPRESSION_MATRIX_ALGEBRA_H
#include "./vector_algebra.hpp"
#include "../matrix.hpp"
#include "../linalg/det_and_inverse.hpp"
#include "../blas_lapack/gemv.hpp"
#include "../blas_lapack/gemm.hpp"
namespace triqs { namespace arrays {
// matrix * matrix
template<typename A, typename B, typename Enable = void> struct _matmul_rvalue {};
template<typename A, typename B> struct _matmul_rvalue<A,B, ENABLE_IFC(ImmutableMatrix<A>::value && ImmutableMatrix<B>::value)> {
typedef typename std::remove_const<typename A::value_type>::type V1;
typedef typename std::remove_const<typename B::value_type>::type V2;
typedef matrix<typename std::decay<decltype( V1{} * V2{})>::type> type;
};
template<typename A, typename B>
typename _matmul_rvalue<A,B>::type
operator * (A const & a, B const & b) {
if (second_dim(a) != first_dim(b)) TRIQS_RUNTIME_ERROR<< "Matrix product : dimension mismatch in A*B "<< a<<" "<< b;
auto R = typename _matmul_rvalue<A,B>::type( first_dim(a), second_dim(b));
blas::gemm(1.0,a, b, 0.0, R);
return R;
}
// matrix * vector
template<typename M, typename V, typename Enable = void> struct _mat_vec_mul_rvalue {};
template<typename M, typename V> struct _mat_vec_mul_rvalue<M,V, ENABLE_IFC(ImmutableMatrix<M>::value && ImmutableVector<V>::value)> {
typedef typename std::remove_const<typename M::value_type>::type V1;
typedef typename std::remove_const<typename V::value_type>::type V2;
typedef vector<typename std::decay<decltype(V1{} * V2{})>::type> type;
};
template<typename M, typename V>
typename _mat_vec_mul_rvalue<M,V>::type
operator * (M const & m, V const & v) {
if (second_dim(m) != v.size()) TRIQS_RUNTIME_ERROR<< "Matrix product : dimension mismatch in Matrix*Vector "<< m<<" "<< v;
auto R = typename _mat_vec_mul_rvalue<M,V>::type(first_dim(m));
blas::gemv(1.0,m,v,0.0,R);
return R;
}
// expression template
template<typename Tag, typename L, typename R>
struct matrix_expr : TRIQS_CONCEPT_TAG_NAME(ImmutableMatrix) {
typedef typename std::remove_reference<L>::type L_t;
typedef typename std::remove_reference<R>::type R_t;
static_assert( get_rank<R_t>::value==0 || get_rank<L_t>::value==0 || get_rank<L_t>::value == get_rank<R_t>::value, "rank mismatch in matrix operations");
//typedef typename std::result_of<utility::operation<Tag>(typename L_t::value_type,typename R_t::value_type )>::type value_type;
typedef typename std::remove_cv< typename std::remove_reference<typename std::result_of<combine_domain(L_t,R_t)>::type>::type>::type domain_type;
L l; R r;
using value_type = decltype(utility::operation<Tag>()(l(0, 0), r(0, 0)));
template<typename LL, typename RR> matrix_expr(LL && l_, RR && r_) : l(std::forward<LL>(l_)), r(std::forward<RR>(r_)) {}
domain_type domain() const { return combine_domain()(l,r); }
template<typename ... Args> value_type operator()(Args && ... args) const { return utility::operation<Tag>()(l(std::forward<Args>(args)...) , r(std::forward<Args>(args)...));}
friend std::ostream &operator <<(std::ostream &sout, matrix_expr const &expr){return sout << "("<<expr.l << " "<<utility::operation<Tag>::name << " "<<expr.r<<")" ; }
};
template<typename L> // a special case : the unary operator !
struct matrix_unary_m_expr : TRIQS_CONCEPT_TAG_NAME(ImmutableMatrix) {
typedef typename std::remove_reference<L>::type L_t;
typedef typename L_t::value_type value_type;
typedef typename L_t::domain_type domain_type;
L l;
template<typename LL> matrix_unary_m_expr(LL && l_) : l(std::forward<LL>(l_)) {}
domain_type domain() const { return l.domain(); }
template<typename ... Args> value_type operator()(Args && ... args) const { return -l(std::forward<Args>(args)...);}
friend std::ostream &operator <<(std::ostream &sout, matrix_unary_m_expr const &expr){return sout << '-'<<expr.l; }
};
// Now we can define all the C++ operators ...
#define DEFINE_OPERATOR(TAG, OP, TRAIT1, TRAIT2) \
template<typename A1, typename A2>\
typename std::enable_if<TRAIT1<A1>::value && TRAIT2 <A2>::value, \
matrix_expr<utility::tags::TAG, typename node_t<A1,false>::type, typename node_t<A2,false>::type>>::type\
operator OP (A1 && a1, A2 && a2) { return {std::forward<A1>(a1),std::forward<A2>(a2)};}
DEFINE_OPERATOR(plus, +, ImmutableMatrix,ImmutableMatrix);
DEFINE_OPERATOR(minus, -, ImmutableMatrix,ImmutableMatrix);
DEFINE_OPERATOR(minus, -, ImmutableMatrix,is_in_ZRC);
DEFINE_OPERATOR(minus, -, is_in_ZRC,ImmutableMatrix);
DEFINE_OPERATOR(multiplies, *, is_in_ZRC,ImmutableMatrix);
DEFINE_OPERATOR(multiplies, *, ImmutableMatrix,is_in_ZRC);
DEFINE_OPERATOR(divides, /, ImmutableMatrix,is_in_ZRC);
#undef DEFINE_OPERATOR
// the addition/substraction of diagonal matrix is special : all scalar are diagonal matrices here...
#define DEFINE_OPERATOR(TAG, OP, TRAIT1, TRAIT2) \
template<typename A1, typename A2>\
typename std::enable_if<TRAIT1<A1>::value && TRAIT2 <A2>::value, \
matrix_expr<utility::tags::TAG, typename node_t<A1,true>::type, typename node_t<A2,true>::type>>::type\
operator OP (A1 && a1, A2 && a2) { return {std::forward<A1>(a1),std::forward<A2>(a2)};}
DEFINE_OPERATOR(plus, +, ImmutableMatrix,is_in_ZRC);
DEFINE_OPERATOR(plus, +, is_in_ZRC,ImmutableMatrix);
DEFINE_OPERATOR(minus, -, ImmutableMatrix,is_in_ZRC);
DEFINE_OPERATOR(minus, -, is_in_ZRC,ImmutableMatrix);
#undef DEFINE_OPERATOR
// the unary is special
template<typename A1>
typename std::enable_if<
ImmutableMatrix<A1>::value,
matrix_unary_m_expr<typename node_t<A1,true>::type >
>::type
operator - (A1 && a1) { return {std::forward<A1>(a1)};}
template<typename M1, typename Enable = typename std::enable_if<ImmutableMatrix<M1>::value>::type >
struct _a_div_matrix {
template<typename A, typename M> auto operator() (A && a, M && m) DECL_AND_RETURN ( std::forward<A>(a) * inverse(std::forward<M>(m)));
};
//typedef decltype ( std::declval<typename std::remove_reference<A>::type>() * inverse(std::declval<typename std::remove_reference<M>::type>() )) type;
template<typename A, typename M> // anything / matrix ---> anything * inverse(matrix)
//typename boost::lazy_enable_if< ImmutableMatrix<M>, std::result_of<_a_div_matrix(A,M)__type_of_mult_expr_matrix<A,M> >::type
//typename std::result_of<_a_div_matrix(A,M)>::type
//operator/ (A && a, M && m) {return _a_div_matrix<M>()( std::forward<A>(a), std::forward<M>(m));}
auto operator/ (A && a, M && m) DECL_AND_RETURN( _a_div_matrix<M>()( std::forward<A>(a), std::forward<M>(m)));
// -> typename std::enable_if< ImmutableMatrix<M>::value, decltype(std::forward<A>(a) * inverse(std::forward<M>(m)))>::type
//{ return std::forward<A>(a) * inverse(std::forward<M>(m));}
}}//namespace triqs::arrays
#endif