mirror of
https://github.com/triqs/dft_tools
synced 2025-01-21 10:01:49 +01:00
288 lines
11 KiB
FortranFixed
288 lines
11 KiB
FortranFixed
|
|
||
|
c ******************************************************************************
|
||
|
c
|
||
|
c TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||
|
c
|
||
|
c Copyright (C) 2011 by L. Pourovskii, V. Vildosola, C. Martins, M. Aichhorn
|
||
|
c
|
||
|
c TRIQS is free software: you can redistribute it and/or modify it under the
|
||
|
c terms of the GNU General Public License as published by the Free Software
|
||
|
c Foundation, either version 3 of the License, or (at your option) any later
|
||
|
c version.
|
||
|
c
|
||
|
c TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
|
c WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||
|
c FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||
|
c details.
|
||
|
c
|
||
|
c You should have received a copy of the GNU General Public License along with
|
||
|
c TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||
|
c
|
||
|
c *****************************************************************************/
|
||
|
|
||
|
SUBROUTINE outband
|
||
|
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
C %% %%
|
||
|
C %% This subroutine creates the output file case.outband, with all %%
|
||
|
C %% the informations necessary for the computation of the spectral %%
|
||
|
C %% function of the system. %%
|
||
|
C %% %%
|
||
|
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
|
||
|
C Definition of the variables :
|
||
|
C -----------------------------
|
||
|
USE almblm_data
|
||
|
USE bands
|
||
|
USE common_data
|
||
|
USE file_names
|
||
|
USE prnt
|
||
|
USE projections
|
||
|
USE reps
|
||
|
IMPLICIT NONE
|
||
|
C
|
||
|
INTEGER :: iorb, icrorb, irep, isrt
|
||
|
INTEGER :: l, m, is, i1, i2, i
|
||
|
INTEGER :: ik, il, ib, ir, n
|
||
|
INTEGER :: ind1, ind2, iatom
|
||
|
C
|
||
|
WRITE(buf,'(a)')'Writing the file case.outband...'
|
||
|
CALL printout(0)
|
||
|
C
|
||
|
C ======================================
|
||
|
C Informations about the chosen k-path :
|
||
|
C ======================================
|
||
|
C
|
||
|
C Number of k-points along the chosen k-path
|
||
|
WRITE(ouband,'(i6)') nkband
|
||
|
C Description of the number of bands in the energy window at each k_point
|
||
|
C
|
||
|
DO is=1,ns
|
||
|
C If SO is considered, the number of up and dn bands are the same.
|
||
|
IF ((ifSP.AND.ifSO).and.(is.eq.2)) cycle
|
||
|
DO ik=1,nk
|
||
|
WRITE(ouband,'(i6)')
|
||
|
& ABS(kp(ik,is)%nb_top-kp(ik,is)%nb_bot+1)
|
||
|
ENDDO ! End of the ik loop
|
||
|
ENDDO ! End of the is loop
|
||
|
C for each k-point, the number of band included in the energy window is written.
|
||
|
C ===========================================================
|
||
|
C Description of the projectors for the correlated orbitals :
|
||
|
C ===========================================================
|
||
|
DO ik=1,nk
|
||
|
DO icrorb=1,ncrorb
|
||
|
l=crorb(icrorb)%l
|
||
|
isrt=crorb(icrorb)%sort
|
||
|
C
|
||
|
C The case l=0 is a particular case of "non-mixing" basis.
|
||
|
C --------------------------------------------------------
|
||
|
IF (l==0) THEN
|
||
|
C For the s-orbitals, the only irep possible is the matrix itself.
|
||
|
DO is=1,ns
|
||
|
WRITE(ouband,*)
|
||
|
& REAL(pr_crorb(icrorb,ik,is)%mat_rep(1,
|
||
|
& kp(ik,is)%nb_bot:kp(ik,is)%nb_top))
|
||
|
ENDDO
|
||
|
DO is=1,ns
|
||
|
WRITE(ouband,*)
|
||
|
& AIMAG(pr_crorb(icrorb,ik,is)%mat_rep(1,
|
||
|
& kp(ik,is)%nb_bot:kp(ik,is)%nb_top))
|
||
|
ENDDO
|
||
|
C
|
||
|
C If the basis representation needs a complete spinor rotation approach (basis with "mixing" ).
|
||
|
C ---------------------------------------------------------------------------------------------
|
||
|
ELSEIF (reptrans(l,isrt)%ifmixing) THEN
|
||
|
C In this case, the SO is necessary considered, spinor rotation matrices are used.
|
||
|
IF(crorb(icrorb)%ifsplit) THEN
|
||
|
C If only 1 irep is correlated
|
||
|
ind1=1
|
||
|
DO irep=1,reptrans(l,isrt)%nreps
|
||
|
IF(crorb(icrorb)%correp(irep)) THEN
|
||
|
ind2=ind1+reptrans(l,isrt)%dreps(irep)-1
|
||
|
DO m=ind1,ind2
|
||
|
WRITE(ouband,*)
|
||
|
& REAL(pr_crorb(icrorb,ik,1)%mat_rep(m,
|
||
|
& kp(ik,1)%nb_bot:kp(ik,1)%nb_top))
|
||
|
ENDDO
|
||
|
DO m=ind1,ind2
|
||
|
WRITE(ouband,*)
|
||
|
& AIMAG(pr_crorb(icrorb,ik,1)%mat_rep(m,
|
||
|
& kp(ik,1)%nb_bot:kp(ik,1)%nb_top))
|
||
|
ENDDO
|
||
|
ENDIF
|
||
|
ind1=ind1+reptrans(l,isrt)%dreps(irep)
|
||
|
ENDDO
|
||
|
ELSE
|
||
|
C If no particular irep is correlated
|
||
|
DO m=1,2*(2*l+1)
|
||
|
WRITE(ouband,*)
|
||
|
& REAL(pr_crorb(icrorb,ik,1)%mat_rep(m,
|
||
|
& kp(ik,1)%nb_bot:kp(ik,1)%nb_top))
|
||
|
ENDDO
|
||
|
DO m=1,2*(2*l+1)
|
||
|
WRITE(ouband,*)
|
||
|
& AIMAG(pr_crorb(icrorb,ik,1)%mat_rep(m,
|
||
|
& kp(ik,1)%nb_bot:kp(ik,1)%nb_top))
|
||
|
ENDDO
|
||
|
ENDIF
|
||
|
C
|
||
|
C If the basis representation can be reduce to the up/up block (basis without "mixing").
|
||
|
C --------------------------------------------------------------------------------------
|
||
|
ELSE
|
||
|
IF ((.not.(ifSP.AND.ifSO)).AND.crorb(icrorb)%ifsplit) THEN
|
||
|
C If only 1 irep is correlated (case without SO)
|
||
|
ind1=-l
|
||
|
DO irep=1,reptrans(l,isrt)%nreps
|
||
|
IF(crorb(icrorb)%correp(irep)) THEN
|
||
|
ind2=ind1+reptrans(l,isrt)%dreps(irep)-1
|
||
|
DO is=1,ns
|
||
|
DO m=ind1,ind2
|
||
|
WRITE(ouband,*)
|
||
|
& REAL(pr_crorb(icrorb,ik,is)%mat_rep(m,
|
||
|
& kp(ik,is)%nb_bot:kp(ik,is)%nb_top))
|
||
|
ENDDO
|
||
|
ENDDO
|
||
|
DO is=1,ns
|
||
|
DO m=ind1,ind2
|
||
|
WRITE(ouband,*)
|
||
|
& AIMAG(pr_crorb(icrorb,ik,is)%mat_rep(m,
|
||
|
& kp(ik,is)%nb_bot:kp(ik,is)%nb_top))
|
||
|
ENDDO
|
||
|
ENDDO
|
||
|
ENDIF
|
||
|
ind1=ind1+reptrans(l,isrt)%dreps(irep)
|
||
|
ENDDO
|
||
|
ELSE
|
||
|
C If no particular irep is correlated (case with and without SO)
|
||
|
DO is=1,ns
|
||
|
DO m=-l,l
|
||
|
WRITE(ouband,*)
|
||
|
& REAL(pr_crorb(icrorb,ik,is)%mat_rep(m,
|
||
|
& kp(ik,is)%nb_bot:kp(ik,is)%nb_top))
|
||
|
ENDDO
|
||
|
ENDDO
|
||
|
DO is=1,ns
|
||
|
DO m=-l,l
|
||
|
WRITE(ouband,*)
|
||
|
& AIMAG(pr_crorb(icrorb,ik,is)%mat_rep(m,
|
||
|
& kp(ik,is)%nb_bot:kp(ik,is)%nb_top))
|
||
|
ENDDO
|
||
|
ENDDO
|
||
|
END IF ! End of the ifsplit if-then-else
|
||
|
END IF ! End of the ifmixing if-then-else
|
||
|
END DO ! End of the icrorb loop
|
||
|
END DO ! End of the ik loop
|
||
|
C for each k-point and each correlated orbital, the corresponding projector is described by :
|
||
|
C - the real part of the "correlated" submatrix
|
||
|
C - the imaginary part of the "correlated" submatrix
|
||
|
C
|
||
|
C ======================================================
|
||
|
C Description of the Hamiltonian H(k) at each k_point :
|
||
|
C ======================================================
|
||
|
DO is=1,ns
|
||
|
DO ik=1,nk
|
||
|
C If SO is considered, the numbers of up and dn bands are the same.
|
||
|
IF (ifSO.and.is.eq.2) cycle
|
||
|
DO ib=kp(ik,is)%nb_bot,kp(ik,is)%nb_top
|
||
|
WRITE(ouband,*) kp(ik,is)%eband(ib)
|
||
|
ENDDO
|
||
|
ENDDO ! End of the ik loop
|
||
|
ENDDO ! End of the is loop
|
||
|
C for each spin value is and each k-point,
|
||
|
C - the energies of the band with spin is at point k
|
||
|
C
|
||
|
C ================================================================
|
||
|
C Description of the size of the basis for each included orbital :
|
||
|
C ================================================================
|
||
|
DO iorb=1,norb
|
||
|
WRITE(ouband,'(3(i6))') norm_radf(iorb)%n
|
||
|
ENDDO
|
||
|
C There is not more than 1 LO for each orbital (hence n < 4 )
|
||
|
C
|
||
|
C ====================================
|
||
|
C Description of the Theta projector :
|
||
|
C ====================================
|
||
|
DO iorb=1,norb
|
||
|
l=orb(iorb)%l
|
||
|
isrt=orb(iorb)%sort
|
||
|
C
|
||
|
C The case l=0 is a particular case of "non-mixing" basis.
|
||
|
C --------------------------------------------------------
|
||
|
IF (l==0) THEN
|
||
|
DO ik=1,nk
|
||
|
DO ir=1,norm_radf(iorb)%n
|
||
|
DO is=1,ns
|
||
|
WRITE(ouband,*)
|
||
|
& REAL(pr_orb(iorb,ik,is)%matn_rep(1,
|
||
|
& kp(ik,is)%nb_bot:kp(ik,is)%nb_top,ir))
|
||
|
ENDDO
|
||
|
DO is=1,ns
|
||
|
WRITE(ouband,*)
|
||
|
& AIMAG(pr_orb(iorb,ik,is)%matn_rep(1,
|
||
|
& kp(ik,is)%nb_bot:kp(ik,is)%nb_top,ir))
|
||
|
ENDDO
|
||
|
ENDDO ! End of the ir loop
|
||
|
ENDDO ! End of the ik loop
|
||
|
C
|
||
|
C If the basis representation needs a complete spinor rotation approach (basis with "mixing" ).
|
||
|
C ---------------------------------------------------------------------------------------------
|
||
|
ELSEIF (reptrans(l,isrt)%ifmixing) THEN
|
||
|
C In this case, the calculation is necessary spin-polarized with SO, spinor rotation matrices are used.
|
||
|
DO ik=1,nk
|
||
|
DO ir=1,norm_radf(iorb)%n
|
||
|
DO m=1,2*(2*l+1)
|
||
|
WRITE(ouband,*)
|
||
|
& REAL(pr_orb(iorb,ik,1)%matn_rep(m,
|
||
|
& kp(ik,1)%nb_bot:kp(ik,1)%nb_top,ir))
|
||
|
ENDDO
|
||
|
DO m=1,2*(2*l+1)
|
||
|
WRITE(ouband,*)
|
||
|
& AIMAG(pr_orb(iorb,ik,1)%matn_rep(m,
|
||
|
& kp(ik,1)%nb_bot:kp(ik,1)%nb_top,ir))
|
||
|
ENDDO
|
||
|
ENDDO ! End of the ir loop
|
||
|
ENDDO ! End of the ik loop
|
||
|
C
|
||
|
C If the basis representation can be reduce to the up/up block (basis without "mixing").
|
||
|
C --------------------------------------------------------------------------------------
|
||
|
ELSE
|
||
|
DO ik=1,nk
|
||
|
DO ir=1,norm_radf(iorb)%n
|
||
|
DO is=1,ns
|
||
|
DO m=-l,l
|
||
|
WRITE(ouband,*)
|
||
|
& REAL(pr_orb(iorb,ik,is)%matn_rep(m,
|
||
|
& kp(ik,is)%nb_bot:kp(ik,is)%nb_top,ir))
|
||
|
ENDDO
|
||
|
ENDDO ! End of the is loop
|
||
|
DO is=1,ns
|
||
|
DO m=-l,l
|
||
|
WRITE(ouband,*)
|
||
|
& AIMAG(pr_orb(iorb,ik,is)%matn_rep(m,
|
||
|
& kp(ik,is)%nb_bot:kp(ik,is)%nb_top,ir))
|
||
|
ENDDO
|
||
|
ENDDO ! End of the is loop
|
||
|
ENDDO ! End of the ir loop
|
||
|
ENDDO ! End of the ik loop
|
||
|
ENDIF ! End of the ifmixing if-then-else
|
||
|
ENDDO ! End of the iorb loop
|
||
|
C for each included orbital, for each k-point and each |phi_j> elmt,
|
||
|
C the corresponding Thetaprojector is described by :
|
||
|
C - the real part of the matrix
|
||
|
C - the imaginary part of the matrix
|
||
|
C
|
||
|
C =============================
|
||
|
C Description of the k-labels :
|
||
|
C =============================
|
||
|
DO i=1,nlab
|
||
|
WRITE(ouband,'(2i6,a)') i,labels(i)%pos,labels(i)%kname
|
||
|
ENDDO
|
||
|
C for each label, are written :
|
||
|
C - the number of the corresponding k-point in the k-path
|
||
|
C - the name associated to this label
|
||
|
C
|
||
|
RETURN
|
||
|
END
|
||
|
|
||
|
|
||
|
|