10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2024-11-18 12:03:40 +01:00
QCaml/gaussian/lib/primitive_shell_pair.ml

163 lines
3.4 KiB
OCaml

open Common
open Constants
type t = {
norm_scales : float array lazy_t;
exponent : float; (* {% $\alpha + \beta$ %} *)
exponent_inv : float; (* {% $1/(\alpha + \beta)$ %} *)
a_minus_b_sq : float; (* {% $|A-B|^2$ %} *)
normalization : float; (* [norm_coef_a * norm_coef_b * g], with
{% $g = (\pi/(\alpha+\beta))^(3/2) \exp (-|A-B|^2 \alpha\beta/(\alpha+\beta))$ %} *)
center : Coordinate.t; (* {% $P = (\alpha A + \beta B)/(\alpha+\beta)$ %} *)
center_minus_a : Coordinate.t; (* {% $P - A$ %} *)
a_minus_b : Coordinate.t; (* {% $A - B$ %} *)
ang_mom : Angular_momentum.t;
shell_a : Primitive_shell.t;
shell_b : Primitive_shell.t;
}
module Am = Angular_momentum
module Co = Coordinate
module Ps = Primitive_shell
let hash a =
Hashtbl.hash a
let equivalent a b =
a.exponent = b.exponent &&
a.ang_mom = b.ang_mom &&
a.normalization = b.normalization &&
a.center = b.center &&
a.center_minus_a = b.center_minus_a &&
a.a_minus_b = b.a_minus_b
let cmp a b =
hash a - hash b
let create_make_of p_a p_b =
let a_minus_b =
Co.( Ps.center p_a |- Ps.center p_b )
in
let a_minus_b_sq =
Co.dot a_minus_b a_minus_b
in
let norm_scales = lazy (
Array.map (fun v1 ->
Array.map (fun v2 -> v1 *. v2) (Ps.norm_scales p_b)
) (Ps.norm_scales p_a)
|> Array.to_list
|> Array.concat
) in
let ang_mom =
Am.( Ps.ang_mom p_a + Ps.ang_mom p_b )
in
function p_a ->
let norm_coef_a =
Ps.normalization p_a
in
let alfa_a =
Co.( Ps.exponent p_a |. Ps.center p_a )
in
function p_b ->
let normalization =
norm_coef_a *. Ps.normalization p_b
in
let exponent =
Ps.exponent p_a +. Ps.exponent p_b
in
let exponent_inv = 1. /. exponent in
let normalization =
let argexpo =
Ps.exponent p_a *. Ps.exponent p_b *. a_minus_b_sq *. exponent_inv
in
normalization *. (pi *. exponent_inv)**1.5 *. exp (-. argexpo)
in
function cutoff ->
if abs_float normalization > cutoff then (
let beta_b =
Co.( Ps.exponent p_b |. Ps.center p_b )
in
let center =
Co.(exponent_inv |. (alfa_a |+ beta_b))
in
let center_minus_a =
Co.(center |- Ps.center p_a)
in
Some {
ang_mom ;
exponent ; exponent_inv ; center ; center_minus_a ; a_minus_b ;
a_minus_b_sq ; normalization ; norm_scales ; shell_a = p_a;
shell_b = p_b }
)
else None
let make p_a p_b =
let f =
create_make_of p_a p_b
in
match f p_a p_b 0. with
| Some result -> result
| None -> assert false
let norm_scales x =
Lazy.force x.norm_scales
let exponent_inv x = x.exponent_inv
let monocentric x =
Ps.center x.shell_a = Ps.center x.shell_b
let ang_mom x = x.ang_mom
let a_minus_b x = x.a_minus_b
let a_minus_b_sq x = x.a_minus_b_sq
let center_minus_a x = x.center_minus_a
let normalization x = x.normalization
let exponent x = x.exponent
let center x = x.center
let shell_a x = x.shell_a
let shell_b x = x.shell_b
let zkey_array x =
Am.zkey_array (Am.Doublet
Ps.(ang_mom x.shell_a, ang_mom x.shell_b)
)