10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2024-11-07 06:33:39 +01:00
QCaml/HartreeFock/RHF.ml

127 lines
2.5 KiB
OCaml

open Util
open Lacaml.D
open Simulation
let make ?guess:(guess=`Hcore) ?max_scf:(max_scf=64)
?threshold_SCF:(threshold_SCF=1.e-6) simulation =
(* Number of occupied MOs *)
let nocc =
simulation.electrons.Electrons.n_alpha
in
(* Initial guess *)
let guess =
Guess.make ~guess simulation
in
(* Orthogonalization matrix *)
let m_X =
match Lazy.force simulation.overlap_ortho with
| Lowdin x -> x
| Canonical x -> x
| Svd x -> x
in
(* Core Hamiltonian *)
let m_Hc =
let m_T = Lazy.force simulation.kin_ints
and m_V = Lazy.force simulation.eN_ints
in Mat.add m_T m_V
in
(* Overlap matrix *)
let m_S =
Lazy.force simulation.overlap
in
(* SCF iterations *)
let rec loop nSCF iterations m_C =
(* Density matrix over nocc occupied MOs *)
let m_P =
gemm ~alpha:2. ~transb:`T ~k:nocc m_C m_C
in
(* Fock matrix in AO basis *)
let m_F =
Fock.make ~density:m_P simulation
in
(* Fock matrix in MO basis *)
let m_Fmo =
xt_o_x m_F m_X
in
(* MOs in old MO basis *)
let m_C', eigenvalues =
diagonalize_symm m_Fmo
in
(* MOs in AO basis *)
let m_C =
gemm m_X m_C'
in
(* Hartree-Fock energy *)
let energy =
simulation.nuclear_repulsion +. 0.5 *.
Mat.gemm_trace m_P (Mat.add m_Hc m_F)
in
(* Convergence criterion *)
let commutator =
let fps =
gemm m_F (gemm m_P m_S)
and spf =
gemm m_S (gemm m_P m_F)
in
Mat.sub fps spf
|> Mat.as_vec
|> amax
in
let converged =
nSCF = max_scf || (abs_float commutator) < threshold_SCF
in
Printf.printf "%d %16.10f %10.4e\n%!" nSCF energy commutator;
if not converged then
loop (nSCF+1) (energy :: iterations) m_C
else
let iterations =
List.rev iterations
|> Array.of_list
in
{ HartreeFock_type.
guess ;
eigenvectors = m_C ;
eigenvalues ;
energy = iterations.(Array.length iterations - 1) ;
iterations ;
}
in
(* Guess coefficients *)
let m_H =
match guess with
| Guess.Hcore m_H -> m_H
in
let m_Hmo =
xt_o_x m_H m_X
in
let m_C', _ =
diagonalize_symm m_Hmo
in
let m_C =
gemm m_X m_C'
in
loop 1 [] m_C