10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2024-11-18 20:12:26 +01:00
QCaml/Basis/KinInt.ml
2018-02-25 01:40:12 +01:00

183 lines
4.8 KiB
OCaml

open Util
open Constants
open Lacaml.D
module Am = AngularMomentum
module Bs = Basis
module Co = Coordinate
module Cs = ContractedShell
module Csp = ContractedShellPair
module Po = Powers
module Sp = ShellPair
type t = Mat.t
let cutoff = integrals_cutoff
let to_powers x =
let open Zkey in
match to_powers x with
| Six x -> x
| _ -> assert false
(** Computes all the kinetic integrals of the contracted shell pair *)
let contracted_class shell_a shell_b : float Zmap.t =
let shell_p =
Csp.create shell_a shell_b
in
(* Pre-computation of integral class indices *)
let class_indices =
Am.zkey_array (Am.Doublet (shell_a.totAngMom, shell_b.totAngMom))
in
let contracted_class =
Array.make (Array.length class_indices) 0.
in
(* Compute all integrals in the shell for each pair of significant shell pairs *)
let sp = shell_p.Csp.shell_pairs in
let center_ab =
shell_p.Csp.center_ab
in
let norm_coef_scale =
shell_p.Csp.norm_coef_scale
in
for ab=0 to (Array.length sp - 1)
do
let coef_prod =
shell_p.Csp.coef.(ab)
in
(** Screening on thr product of coefficients *)
if (abs_float coef_prod) > 1.e-4*.cutoff then
begin
let center_pa =
sp.(ab).Sp.center_a
in
let expo_inv =
shell_p.Csp.expo_inv.(ab)
in
let i, j =
sp.(ab).Sp.i, sp.(ab).Sp.j
in
let expo_a =
sp.(ab).Sp.shell_a.expo.(i)
and expo_b =
sp.(ab).Sp.shell_b.expo.(j)
in
let xyz_of_int k =
match k with
| 0 -> Co.X
| 1 -> Co.Y
| _ -> Co.Z
in
Array.iteri (fun i key ->
let (angMomA,angMomB) = to_powers key in
let ov a b k =
let xyz = xyz_of_int k in
Overlap_primitives.hvrr (a, b)
expo_inv
(Co.get xyz center_ab,
Co.get xyz center_pa)
in
let f k =
let xyz = xyz_of_int k in
ov (Po.get xyz angMomA) (Po.get xyz angMomB) k
and g k =
let xyz = xyz_of_int k in
let s1 = ov (Po.get xyz angMomA - 1) (Po.get xyz angMomB - 1) k
and s2 = ov (Po.get xyz angMomA + 1) (Po.get xyz angMomB - 1) k
and s3 = ov (Po.get xyz angMomA - 1) (Po.get xyz angMomB + 1) k
and s4 = ov (Po.get xyz angMomA + 1) (Po.get xyz angMomB + 1) k
and a = float_of_int (Po.get xyz angMomA)
and b = float_of_int (Po.get xyz angMomB)
in
0.5 *. a *. b *. s1 -. expo_a *. b *. s2 -. expo_b *. a *. s3 +.
2.0 *. expo_a *. expo_b *. s4
in
let s = Array.init 3 f
and k = Array.init 3 g
in
let norm = norm_coef_scale.(i) in
let integral = chop norm (fun () ->
k.(0)*.s.(1)*.s.(2) +.
s.(0)*.k.(1)*.s.(2) +.
s.(0)*.s.(1)*.k.(2)
) in
contracted_class.(i) <- contracted_class.(i) +. coef_prod *. integral
) class_indices
end
done;
let result =
Zmap.create (Array.length contracted_class)
in
Array.iteri (fun i key -> Zmap.add result key contracted_class.(i)) class_indices;
result
(** Create kinetic energy matrix *)
let of_basis basis =
let to_powers x =
let open Zkey in
match to_powers x with
| Three x -> x
| _ -> assert false
in
let n = basis.Bs.size
and shell = basis.Bs.contracted_shells
in
let result = Mat.create n n in
for j=0 to (Array.length shell) - 1 do
for i=0 to j do
(* Compute all the integrals of the class *)
let cls =
contracted_class shell.(i) shell.(j)
in
Array.iteri (fun j_c powers_j ->
let j_c = shell.(j).index + j_c + 1 in
let xj = to_powers powers_j in
Array.iteri (fun i_c powers_i ->
let i_c = shell.(i).index + i_c + 1 in
let xi = to_powers powers_i in
let key =
Zkey.of_powers_six xi xj
in
let value =
try Zmap.find cls key
with Not_found -> failwith "Bug in kinetic integrals"
in
result.{i_c,j_c} <- value;
result.{j_c,i_c} <- value;
) shell.(i).powers
) shell.(j).powers
done;
done;
Mat.detri result;
result
(** Write all kinetic integrals to a file *)
let to_file ~filename kinetic =
let oc = open_out filename in
let n =
Mat.dim1 kinetic
in
for j=1 to n do
for i=1 to j do
if (abs_float kinetic.{i,j} > cutoff) then
Printf.fprintf oc "%4d %4d %20.12e\n" i j kinetic.{i,j}
done;
done;
close_out oc