10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2024-11-09 07:33:40 +01:00
QCaml/CI/CIMatrixElement.ml

258 lines
8.7 KiB
OCaml

open Lacaml.D
module De = Determinant
module Ex = Excitation
module Sp = Spindeterminant
type t = float list
let non_zero integrals degree_a degree_b ki kj =
let kia = De.alfa ki and kib = De.beta ki
and kja = De.alfa kj and kjb = De.beta kj
in
let single h p spin same opposite =
let same_spin_mo_list =
Sp.to_list same
and opposite_spin_mo_list =
Sp.to_list opposite
in
fun one_e two_e ->
let same_spin =
List.fold_left (fun accu i -> accu +. two_e h i p i spin spin) 0. same_spin_mo_list
and opposite_spin =
List.fold_left (fun accu i -> accu +. two_e h i p i spin (Spin.other spin) ) 0. opposite_spin_mo_list
in (one_e h p spin) +. same_spin +. opposite_spin
in
let diag_element =
let mo_a = Sp.to_list kia
and mo_b = Sp.to_list kib
in
fun one_e two_e ->
let one =
(List.fold_left (fun accu i -> accu +. one_e i i Spin.Alfa) 0. mo_a)
+.
(List.fold_left (fun accu i -> accu +. one_e i i Spin.Beta) 0. mo_b)
in
let two =
let rec aux_same spin accu = function
| [] -> accu
| i :: rest ->
let new_accu =
List.fold_left (fun accu j -> accu +. two_e i j i j spin spin) accu rest
in
(aux_same [@tailcall]) spin new_accu rest
in
let rec aux_opposite accu other = function
| [] -> accu
| i :: rest ->
let new_accu =
List.fold_left (fun accu j -> accu +. two_e i j i j Spin.Alfa Spin.Beta) accu other
in
(aux_opposite [@tailcall]) new_accu other rest
in
(aux_same Spin.Alfa 0. mo_a) +. (aux_same Spin.Beta 0. mo_b) +.
(aux_opposite 0. mo_a mo_b)
in
one +. two
in
let result_2e = lazy (
match degree_a, degree_b with
| 1, 1 -> (* alpha-beta double *)
begin
let ha, pa, phase_a = Ex.single_of_spindet kia kja in
let hb, pb, phase_b = Ex.single_of_spindet kib kjb in
match phase_a, phase_b with
| Phase.Pos, Phase.Pos
| Phase.Neg, Phase.Neg -> fun _ two_e -> two_e ha hb pa pb Spin.Alfa Spin.Beta
| Phase.Neg, Phase.Pos
| Phase.Pos, Phase.Neg -> fun _ two_e -> -. two_e ha hb pa pb Spin.Alfa Spin.Beta
end
| 2, 0 -> (* alpha double *)
begin
let h1, p1, h2, p2, phase = Ex.double_of_spindet kia kja in
match phase with
| Phase.Pos -> fun _ two_e -> two_e h1 h2 p1 p2 Spin.Alfa Spin.Alfa
| Phase.Neg -> fun _ two_e -> -. two_e h1 h2 p1 p2 Spin.Alfa Spin.Alfa
end
| 0, 2 -> (* beta double *)
begin
let h1, p1, h2, p2, phase = Ex.double_of_spindet kib kjb in
match phase with
| Phase.Pos -> fun _ two_e -> two_e h1 h2 p1 p2 Spin.Beta Spin.Beta
| Phase.Neg -> fun _ two_e -> -. two_e h1 h2 p1 p2 Spin.Beta Spin.Beta
end
| 1, 0 -> (* alpha single *)
begin
let h, p, phase = Ex.single_of_spindet kia kja in
match phase with
| Phase.Pos -> fun one_e two_e -> single h p Spin.Alfa kia kib one_e two_e
| Phase.Neg -> fun one_e two_e -> -. single h p Spin.Alfa kia kib one_e two_e
end
| 0, 1 -> (* beta single *)
begin
let h, p, phase = Ex.single_of_spindet kib kjb in
match phase with
| Phase.Pos -> fun one_e two_e -> single h p Spin.Beta kib kia one_e two_e
| Phase.Neg -> fun one_e two_e -> -. single h p Spin.Beta kib kia one_e two_e
end
| 0, 0 -> (* diagonal element *)
diag_element
| _ -> assert false
) in
let result_3e = lazy (
match degree_a, degree_b with
| 1, 1 -> (* alpha-beta double *)
begin
let ha, pa, phase_a = Ex.single_of_spindet kia kja in
let hb, pb, phase_b = Ex.single_of_spindet kib kjb in
match phase_a, phase_b with
| Phase.Pos, Phase.Pos
| Phase.Neg, Phase.Neg -> fun _ two_e _ -> two_e ha hb pa pb Spin.Alfa Spin.Beta
| Phase.Neg, Phase.Pos
| Phase.Pos, Phase.Neg -> fun _ two_e _ -> -. two_e ha hb pa pb Spin.Alfa Spin.Beta
end
| 2, 0 -> (* alpha double *)
begin
let h1, p1, h2, p2, phase = Ex.double_of_spindet kia kja in
match phase with
| Phase.Pos -> fun _ two_e _ -> two_e h1 h2 p1 p2 Spin.Alfa Spin.Alfa
| Phase.Neg -> fun _ two_e _ -> -. two_e h1 h2 p1 p2 Spin.Alfa Spin.Alfa
end
| 0, 2 -> (* beta double *)
begin
let h1, p1, h2, p2, phase = Ex.double_of_spindet kib kjb in
match phase with
| Phase.Pos -> fun _ two_e _ -> two_e h1 h2 p1 p2 Spin.Beta Spin.Beta
| Phase.Neg -> fun _ two_e _ -> -. two_e h1 h2 p1 p2 Spin.Beta Spin.Beta
end
| 1, 0 -> (* alpha single *)
begin
let h, p, phase = Ex.single_of_spindet kia kja in
match phase with
| Phase.Pos -> fun one_e two_e _ -> single h p Spin.Alfa kia kib one_e two_e
| Phase.Neg -> fun one_e two_e _ -> -. single h p Spin.Alfa kia kib one_e two_e
end
| 0, 1 -> (* beta single *)
begin
let h, p, phase = Ex.single_of_spindet kib kjb in
match phase with
| Phase.Pos -> fun one_e two_e _ -> single h p Spin.Beta kib kia one_e two_e
| Phase.Neg -> fun one_e two_e _ -> -. single h p Spin.Beta kib kia one_e two_e
end
| 0, 0 -> (* diagonal element *)
fun one_e two_e _ -> diag_element one_e two_e
| 3, 0 -> (* alpha triple *)
begin
let h1, p1, h2, p2, h3, p3, phase = Ex.triple_of_spindet kia kja in
match phase with
| Phase.Pos -> fun _ _ three_e -> three_e h1 h2 h3 p1 p2 p3 Spin.Alfa Spin.Alfa Spin.Alfa
| Phase.Neg -> fun _ _ three_e -> -. three_e h1 h2 h3 p1 p2 p3 Spin.Alfa Spin.Alfa Spin.Alfa
end
| 0, 3 -> (* beta triple *)
begin
let h1, p1, h2, p2, h3, p3, phase = Ex.triple_of_spindet kib kja in
match phase with
| Phase.Pos -> fun _ _ three_e -> three_e h1 h2 h3 p1 p2 p3 Spin.Beta Spin.Beta Spin.Beta
| Phase.Neg -> fun _ _ three_e -> -. three_e h1 h2 h3 p1 p2 p3 Spin.Beta Spin.Beta Spin.Beta
end
| 2, 1 -> (* alpha2 beta triple *)
begin
let h1, p1, h2, p2, phase = Ex.double_of_spindet kia kja in
let h3, p3, phase' = Ex.single_of_spindet kib kjb in
match phase, phase' with
| Phase.Pos, Phase.Pos
| Phase.Neg, Phase.Neg ->
fun _ _ three_e -> three_e h1 h2 h3 p1 p2 p3 Spin.Alfa Spin.Alfa Spin.Beta
| Phase.Neg, Phase.Pos
| Phase.Pos, Phase.Neg ->
fun _ _ three_e -> -. three_e h1 h2 h3 p1 p2 p3 Spin.Alfa Spin.Alfa Spin.Beta
end
| 1, 2 -> (* alpha beta2 triple *)
begin
let h1, p1, phase = Ex.single_of_spindet kia kja in
let h2, p2, h3, p3, phase' = Ex.double_of_spindet kib kjb in
match phase, phase' with
| Phase.Pos, Phase.Pos
| Phase.Neg, Phase.Neg ->
fun _ _ three_e -> three_e h1 h2 h3 p1 p2 p3 Spin.Alfa Spin.Beta Spin.Beta
| Phase.Neg, Phase.Pos
| Phase.Pos, Phase.Neg ->
fun _ _ three_e -> -. three_e h1 h2 h3 p1 p2 p3 Spin.Alfa Spin.Beta Spin.Beta
end
| _ -> fun _ _ _ -> 0.
) in
List.map (fun (one_e, two_e, x) ->
match x with
| None -> (Lazy.force result_2e) one_e two_e
| Some three_e -> (Lazy.force result_3e) one_e two_e three_e
) integrals
let make integrals ki kj =
let degree_a, degree_b =
De.degrees ki kj
in
if degree_a+degree_b > 2 then
List.map (fun _ -> 0.) integrals
else
non_zero integrals degree_a degree_b ki kj
let make_s2 ki kj =
let degree_a = De.degree_alfa ki kj in
let kia = De.alfa ki in
let kja = De.alfa kj in
if degree_a > 1 then 0.
else
let degree_b = De.degree_beta ki kj in
let kib = De.beta ki in
let kjb = De.beta kj in
match degree_a, degree_b with
| 1, 1 -> (* alpha-beta double *)
let ha, pa, phase_a = Ex.single_of_spindet kia kja in
let hb, pb, phase_b = Ex.single_of_spindet kib kjb in
if ha = pb && hb = pa then
begin
match phase_a, phase_b with
| Phase.Pos, Phase.Pos
| Phase.Neg, Phase.Neg -> -1.
| Phase.Neg, Phase.Pos
| Phase.Pos, Phase.Neg -> 1.
end
else 0.
| 0, 0 ->
let ba = Sp.bitstring kia and bb = Sp.bitstring kib in
let tmp = Bitstring.logxor ba bb in
let n_a = Bitstring.logand ba tmp |> Bitstring.popcount in
let n_b = Bitstring.logand bb tmp |> Bitstring.popcount in
let s_z = 0.5 *. float_of_int (n_a - n_b) in
float_of_int n_a +. s_z *. (s_z -. 1.)
| _ -> 0.