QCaml/Basis/OneElectronRR.ml

225 lines
6.9 KiB
OCaml

open Util
open Constants
exception NullPair
(** In chop f g, evaluate g only if f is non zero, and return f *. (g ()) *)
let chop f g =
if (abs_float f) < cutoff then 0.
else f *. (g ())
(** Horizontal and Vertical Recurrence Relations (HVRR) *)
let hvrr_one_e
(angMom_a, angMom_b) (totAngMom_a, totAngMom_b)
(maxm, zero_m_array) (expo_inv_p) (center_ab, center_pa, center_pc)
map
=
let totAngMom_a = Angular_momentum.to_int totAngMom_a
and totAngMom_b = Angular_momentum.to_int totAngMom_b
in
let maxm = totAngMom_a+totAngMom_b in
let maxsze = maxm+1 in
let empty = Array.make maxsze 0. in
(** Vertical recurrence relations *)
let rec vrr angMom_a totAngMom_a =
let ax,ay,az = angMom_a in
if (ax < 0) || (ay < 0) || (az < 0) then
empty
else
match totAngMom_a with
| 0 -> zero_m_array
| _ ->
let key = Zkey.of_int_tuple (Zkey.Three angMom_a) in
try Zmap.find map key with
| Not_found ->
let result =
let am, amm, amxyz, xyz =
match angMom_a with
| (x,0,0) -> (x-1,0,0),(x-2,0,0), x-1, 0
| (x,y,0) -> (x,y-1,0),(x,y-2,0), y-1, 1
| (x,y,z) -> (x,y,z-1),(x,y,z-2), z-1, 2
in
if amxyz < 0 then empty else
let f1 = Coordinate.coord center_pa xyz
and f2 = expo_inv_p *. (Coordinate.coord center_pc xyz)
in
if amxyz < 1 then
let v1 =
vrr am (totAngMom_a-1)
in
Array.init maxsze (fun m ->
if m = maxm then 0. else (f1 *. v1.(m) ) -. f2 *. v1.(m+1) )
else
let v3 =
vrr amm (totAngMom_a-2)
in
let v1 =
vrr am (totAngMom_a-1)
in
let f3 = (float_of_int amxyz) *. expo_inv_p *. 0.5 in
Array.init maxsze (fun m ->
(if m = maxm then 0. else
(f1 *. v1.(m+1) ) -. f2 *. v1.(m) )
+. f3 *. (v3.(m) +. if m = maxm then 0. else
expo_inv_p *. v3.(m+1))
)
in Zmap.add map key result;
result
(** Horizontal recurrence relations *)
and hrr angMom_a angMom_b totAngMom_a totAngMom_b =
let bx,by,bz = angMom_b in
if (bx < 0) || (by < 0) || (bz < 0) then 0.
else
match totAngMom_b with
| 0 -> (vrr angMom_a totAngMom_a).(0)
| _ ->
let angMom_ax, angMom_ay, angMom_az = angMom_a
and angMom_bx, angMom_by, angMom_bz = angMom_b in
let bxyz, xyz =
match angMom_b with
| (_,0,0) -> angMom_bx, 0
| (_,_,0) -> angMom_by, 1
| (_,_,_) -> angMom_bz, 2
in
if (bxyz < 1) then 0. else
let ap, bm =
match xyz with
| 0 -> (angMom_ax+1,angMom_ay,angMom_az),(angMom_bx-1,angMom_by,angMom_bz)
| 1 -> (angMom_ax,angMom_ay+1,angMom_az),(angMom_bx,angMom_by-1,angMom_bz)
| _ -> (angMom_ax,angMom_ay,angMom_az+1),(angMom_bx,angMom_by,angMom_bz-1)
in
let h1 =
hrr ap bm (totAngMom_a+1) (totAngMom_b-1)
in
let f2 =
(Coordinate.coord center_ab xyz)
in
if (abs_float f2 < cutoff) then h1 else
let h2 =
hrr angMom_a bm totAngMom_a (totAngMom_b-1)
in
h1 +. f2 *. h2
in
hrr
(angMom_a.(0),angMom_a.(1),angMom_a.(2))
(angMom_b.(0),angMom_b.(1),angMom_b.(2))
totAngMom_a totAngMom_b
(** Computes all the one-electron integrals of the contracted shell pair *)
let contracted_class_shell_pair ~zero_m shell_p geometry : float Zmap.t =
let shell_a = shell_p.(0).Shell_pair.shell_a
and shell_b = shell_p.(0).Shell_pair.shell_b
in
let maxm =
let open Angular_momentum in
(to_int @@ Contracted_shell.totAngMom shell_a) + (to_int @@ Contracted_shell.totAngMom shell_b)
in
(* Pre-computation of integral class indices *)
let class_indices =
Angular_momentum.zkey_array
(Angular_momentum.Doublet
Contracted_shell.(totAngMom shell_a, totAngMom shell_b))
in
let contracted_class =
Array.make (Array.length class_indices) 0.;
in
(* Compute all integrals in the shell for each pair of significant shell pairs *)
for ab=0 to (Array.length shell_p - 1)
do
try
begin
let coef_prod = shell_p.(ab).Shell_pair.coef in
let norm_coef_scale_p = shell_p.(ab).Shell_pair.norm_coef_scale in
(** Screening on the product of coefficients *)
if (abs_float coef_prod) < 1.e-4*.cutoff then
raise NullPair;
let expo_pq_inv =
shell_p.(ab).Shell_pair.expo_inv
in
let center_ab =
shell_p.(ab).Shell_pair.center_ab
in
let center_pa =
Coordinate.(center_ab |- shell_a.Contracted_shell.center)
in
for c=0 to Array.length geometry - 1 do
let element, nucl_coord = geometry.(c) in
let charge = Element.to_charge element |> Charge.to_float in
let center_pc =
Coordinate.(shell_p.(ab).Shell_pair.center |- nucl_coord )
in
let norm_pq_sq =
Coordinate.dot center_pc center_pc
in
let zero_m_array =
zero_m ~maxm ~expo_pq_inv ~norm_pq_sq
in
match Contracted_shell.(totAngMom shell_a, totAngMom shell_b) with
| Angular_momentum.(S,S) ->
let integral =
zero_m_array.(0)
in
contracted_class.(0) <- contracted_class.(0) -. coef_prod *. integral *. charge
| _ ->
let map = Zmap.create (2*maxm) in
let norm_coef_scale = norm_coef_scale_p in
(* Compute the integral class from the primitive shell quartet *)
class_indices
|> Array.iteri (fun i key ->
let (angMomA,angMomB) =
let a = Zkey.to_int_array Zkey.Kind_6 key in
( [| a.(0) ; a.(1) ; a.(2) |],
[| a.(3) ; a.(4) ; a.(5) |])
in
let norm = norm_coef_scale.(i) in
let coef_prod = coef_prod *. norm in
let integral =
hvrr_one_e (angMomA, angMomB)
(Contracted_shell.totAngMom shell_a, Contracted_shell.totAngMom shell_b)
(maxm, zero_m_array) shell_p.(ab).Shell_pair.expo_inv
(center_ab, center_pa, center_pc)
map
in
contracted_class.(i) <- contracted_class.(i) -. coef_prod *. integral *. charge
)
done
end
with NullPair -> ()
done;
let result =
Zmap.create (Array.length contracted_class)
in
Array.iteri (fun i key -> Zmap.add result key contracted_class.(i)) class_indices;
result