mirror of
https://gitlab.com/scemama/QCaml.git
synced 2024-11-14 10:03:39 +01:00
163 lines
3.4 KiB
OCaml
163 lines
3.4 KiB
OCaml
open Common
|
|
open Constants
|
|
|
|
|
|
type t = {
|
|
norm_scales : float array lazy_t;
|
|
exponent : float; (* {% $\alpha + \beta$ %} *)
|
|
exponent_inv : float; (* {% $1/(\alpha + \beta)$ %} *)
|
|
a_minus_b_sq : float; (* {% $|A-B|^2$ %} *)
|
|
normalization : float; (* [norm_coef_a * norm_coef_b * g], with
|
|
{% $g = (\pi/(\alpha+\beta))^(3/2) \exp (-|A-B|^2 \alpha\beta/(\alpha+\beta))$ %} *)
|
|
center : Coordinate.t; (* {% $P = (\alpha A + \beta B)/(\alpha+\beta)$ %} *)
|
|
center_minus_a : Coordinate.t; (* {% $P - A$ %} *)
|
|
a_minus_b : Coordinate.t; (* {% $A - B$ %} *)
|
|
ang_mom : Angular_momentum.t;
|
|
shell_a : Primitive_shell.t;
|
|
shell_b : Primitive_shell.t;
|
|
}
|
|
|
|
module Am = Angular_momentum
|
|
module Co = Coordinate
|
|
module Ps = Primitive_shell
|
|
|
|
|
|
let hash a =
|
|
Hashtbl.hash a
|
|
|
|
|
|
let equivalent a b =
|
|
a.exponent = b.exponent &&
|
|
a.ang_mom = b.ang_mom &&
|
|
a.normalization = b.normalization &&
|
|
a.center = b.center &&
|
|
a.center_minus_a = b.center_minus_a &&
|
|
a.a_minus_b = b.a_minus_b
|
|
|
|
|
|
let cmp a b =
|
|
hash a - hash b
|
|
|
|
|
|
let create_make_of p_a p_b =
|
|
|
|
let a_minus_b =
|
|
Co.( Ps.center p_a |- Ps.center p_b )
|
|
in
|
|
|
|
let a_minus_b_sq =
|
|
Co.dot a_minus_b a_minus_b
|
|
in
|
|
|
|
let norm_scales = lazy (
|
|
Array.map (fun v1 ->
|
|
Array.map (fun v2 -> v1 *. v2) (Ps.norm_scales p_b)
|
|
) (Ps.norm_scales p_a)
|
|
|> Array.to_list
|
|
|> Array.concat
|
|
) in
|
|
|
|
let ang_mom =
|
|
Am.( Ps.ang_mom p_a + Ps.ang_mom p_b )
|
|
in
|
|
|
|
function p_a ->
|
|
|
|
let norm_coef_a =
|
|
Ps.normalization p_a
|
|
in
|
|
|
|
let alfa_a =
|
|
Co.( Ps.exponent p_a |. Ps.center p_a )
|
|
in
|
|
|
|
function p_b ->
|
|
|
|
let normalization =
|
|
norm_coef_a *. Ps.normalization p_b
|
|
in
|
|
|
|
let exponent =
|
|
Ps.exponent p_a +. Ps.exponent p_b
|
|
in
|
|
|
|
let exponent_inv = 1. /. exponent in
|
|
|
|
let normalization =
|
|
let argexpo =
|
|
Ps.exponent p_a *. Ps.exponent p_b *. a_minus_b_sq *. exponent_inv
|
|
in
|
|
normalization *. (pi *. exponent_inv)**1.5 *. exp (-. argexpo)
|
|
in
|
|
|
|
function cutoff ->
|
|
|
|
if abs_float normalization > cutoff then (
|
|
|
|
let beta_b =
|
|
Co.( Ps.exponent p_b |. Ps.center p_b )
|
|
in
|
|
|
|
let center =
|
|
Co.(exponent_inv |. (alfa_a |+ beta_b))
|
|
in
|
|
|
|
let center_minus_a =
|
|
Co.(center |- Ps.center p_a)
|
|
in
|
|
|
|
Some {
|
|
ang_mom ;
|
|
exponent ; exponent_inv ; center ; center_minus_a ; a_minus_b ;
|
|
a_minus_b_sq ; normalization ; norm_scales ; shell_a = p_a;
|
|
shell_b = p_b }
|
|
|
|
)
|
|
else None
|
|
|
|
|
|
let make p_a p_b =
|
|
let f =
|
|
create_make_of p_a p_b
|
|
in
|
|
match f p_a p_b 0. with
|
|
| Some result -> result
|
|
| None -> assert false
|
|
|
|
|
|
let norm_scales x =
|
|
Lazy.force x.norm_scales
|
|
|
|
let exponent_inv x = x.exponent_inv
|
|
|
|
let monocentric x =
|
|
Ps.center x.shell_a = Ps.center x.shell_b
|
|
|
|
|
|
let ang_mom x = x.ang_mom
|
|
|
|
let a_minus_b x = x.a_minus_b
|
|
|
|
let a_minus_b_sq x = x.a_minus_b_sq
|
|
|
|
let center_minus_a x = x.center_minus_a
|
|
|
|
let normalization x = x.normalization
|
|
|
|
let exponent x = x.exponent
|
|
|
|
let center x = x.center
|
|
|
|
let shell_a x = x.shell_a
|
|
|
|
let shell_b x = x.shell_b
|
|
|
|
|
|
let zkey_array x =
|
|
Am.zkey_array (Am.Doublet
|
|
Ps.(ang_mom x.shell_a, ang_mom x.shell_b)
|
|
)
|
|
|
|
|
|
|