10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2024-11-15 18:43:40 +01:00
QCaml/Basis/OneElectronRR.ml

212 lines
7.7 KiB
OCaml

open Util
(** In chop f g, evaluate g only if f is non zero, and return f *. (g ()) *)
let chop f g =
if (abs_float f) < cutoff then 0.
else f *. (g ())
(** Horizontal and Vertical Recurrence Relations (HVRR) *)
let hvrr_one_e
m (angMom_a, angMom_b) (totAngMom_a, totAngMom_b)
(maxm, zero_m_array) (expo_inv_p) (center_ab, center_pa, center_pc)
map
=
let totAngMom_a = Angular_momentum.to_int totAngMom_a
and totAngMom_b = Angular_momentum.to_int totAngMom_b
in
(** Vertical recurrence relations *)
let rec vrr m angMom_a totAngMom_a =
if angMom_a.(0) < 0 || angMom_a.(1) < 0 || angMom_a.(2) < 0 then 0.
else
match totAngMom_a with
| 0 -> zero_m_array.(m)
| _ ->
let key = [| angMom_a.(0)+1; angMom_a.(1)+1; angMom_a.(2)+1; |]
|> Zkey.(of_int_array ~kind:Kind_3)
in
let (found, result) =
try (true, Zmap.find map.(m) key) with
| Not_found -> (false,
let am = [| angMom_a.(0) ; angMom_a.(1) ; angMom_a.(2) |]
and amm = [| angMom_a.(0) ; angMom_a.(1) ; angMom_a.(2) |]
and xyz =
match angMom_a with
| [|0;0;_|] -> 2
| [|0;_;_|] -> 1
| _ -> 0
in
am.(xyz) <- am.(xyz) - 1;
amm.(xyz) <- amm.(xyz) - 2;
chop (Coordinate.coord center_pa xyz)
(fun () -> vrr m am (totAngMom_a-1))
+. chop (0.5 *. (float_of_int am.(xyz)) *. expo_inv_p)
(fun () -> vrr m amm (totAngMom_a-2))
-. chop ((Coordinate.coord center_pc xyz) *. expo_inv_p)
(fun () -> vrr (m+1) am (totAngMom_a-1))
-. chop (0.5 *. (float_of_int am.(xyz)) *. expo_inv_p *. expo_inv_p)
(fun () -> vrr (m+1) amm (totAngMom_a-2))
in
if not found then
Zmap.add map.(m) key result;
result
(** Horizontal recurrence relations *)
and hrr angMom_a angMom_b totAngMom_a totAngMom_b =
if angMom_b.(0) < 0 || angMom_b.(1) < 0 || angMom_b.(2) < 0 then 0.
else
match totAngMom_b with
| 0 -> vrr 0 angMom_a
| _ ->
let key = [| angMom_a.(0)+1; angMom_a.(1)+1; angMom_a.(2)+1;
angMom_b.(0)+1; angMom_b.(1)+1; angMom_b.(2)+1 |]
|> Zkey.(of_int_array ~kind:Kind_6)
in
let (found, result) =
try (true, Zmap.find map.(m) key) with
| Not_found -> (false,
begin
let ap = [| angMom_a.(0) ; angMom_a.(1) ; angMom_a.(2) |]
and bm = [| angMom_b.(0) ; angMom_b.(1) ; angMom_b.(2) |]
and xyz =
match angMom_b with
| [|0;0;_|] -> 2
| [|0;_;_|] -> 1
| _ -> 0
in
ap.(xyz) <- ap.(xyz) + 1;
bm.(xyz) <- bm.(xyz) - 1;
hrr ap bm (totAngMom_a+1) (totAngMom_b-1)
+. chop (Coordinate.coord center_ab xyz) (fun () ->
hrr angMom_a bm totAngMom_a (totAngMom_b-1) )
end)
in
if not found then
Zmap.add map.(m) key result;
result
in
hrr m angMom_a angMom_b angMom_c angMom_d totAngMom_a totAngMom_b
totAngMom_c totAngMom_d
(** Computes all the one-electron integrals of the contracted shell pair *)
let contracted_class_nuc ~zero_m shell_a shell_b shell_c shell_d : float Zmap.t =
let shell_p = Shell_pair.create_array shell_a shell_b
and maxm =
let open Angular_momentum in
(to_int @@ Contracted_shell.totAngMom shell_a) + (to_int @@ Contracted_shell.totAngMom shell_b)
in
(* Pre-computation of integral class indices *)
let class_indices =
Angular_momentum.zkey_array
(Angular_momentum.Doublet
Contracted_shell.(totAngMom shell_a, totAngMom shell_b))
in
let contracted_class =
Array.make (Array.length class_indices) 0.;
in
()
(* TODO
(* Compute all integrals in the shell for each pair of significant shell pairs *)
for ab=0 to (Array.length shell_p - 1)
do
let b = shell_p.(ab).Shell_pair.j in
for cd=0 to (Array.length shell_q - 1)
do
let coef_prod =
shell_p.(ab).Shell_pair.coef *. shell_q.(cd).Shell_pair.coef
in
(** Screening on thr product of coefficients *)
if (abs_float coef_prod) > 1.e-4*.cutoff then
begin
let expo_pq_inv =
shell_p.(ab).Shell_pair.expo_inv +. shell_q.(cd).Shell_pair.expo_inv
in
let center_pq =
Coordinate.(shell_p.(ab).Shell_pair.center |- shell_q.(cd).Shell_pair.center)
in
let norm_pq_sq =
Coordinate.dot center_pq center_pq
in
let zero_m_array =
zero_m ~maxm ~expo_pq_inv ~norm_pq_sq
in
match Contracted_shell.(totAngMom shell_a, totAngMom shell_b,
totAngMom shell_c, totAngMom shell_d) with
| Angular_momentum.(S,S,S,S) -> Array.iteri (fun i key ->
let coef_prod =
shell_p.(ab).Shell_pair.coef *. shell_q.(cd).Shell_pair.coef
in
let integral =
zero_m_array.(0)
in
contracted_class.(i) <- contracted_class.(i) +. coef_prod *. integral
) class_indices
| _ ->
let d = shell_q.(cd).Shell_pair.j in
let map = Array.init maxm (fun _ -> Zmap.create (Array.length class_indices)) in
(* Compute the integral class from the primitive shell quartet *)
Array.iteri (fun i key ->
let (angMomA,angMomB,angMomC,angMomD) =
let a = Zkey.to_int_array Zkey.Kind_12 key in
( [| a.(0) ; a.(1) ; a.(2) |],
[| a.(3) ; a.(4) ; a.(5) |],
[| a.(6) ; a.(7) ; a.(8) |],
[| a.(9) ; a.(10) ; a.(11) |] )
in
let norm =
shell_p.(ab).Shell_pair.norm_fun angMomA angMomB *. shell_q.(cd).Shell_pair.norm_fun angMomC angMomD
in
let integral = chop norm (fun () ->
ghvrr 0 (angMomA, angMomB, angMomC, angMomD)
(Contracted_shell.totAngMom shell_a, Contracted_shell.totAngMom shell_b,
Contracted_shell.totAngMom shell_c, Contracted_shell.totAngMom shell_d)
(maxm, zero_m_array)
(Contracted_shell.expo shell_b b, Contracted_shell.expo shell_d d)
(shell_p.(ab).Shell_pair.expo_inv, shell_q.(cd).Shell_pair.expo_inv)
(shell_p.(ab).Shell_pair.center_ab, shell_q.(cd).Shell_pair.center_ab, center_pq)
map )
in
contracted_class.(i) <- contracted_class.(i) +. coef_prod *. integral
) class_indices
end
done
done;
let result =
Zmap.create (Array.length contracted_class)
in
Array.iteri (fun i key -> Zmap.add result key contracted_class.(i)) class_indices;
result
*)