10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2024-11-07 06:33:39 +01:00
QCaml/gaussian_integrals/lib/multipole.mli
2020-10-07 17:54:15 +02:00

63 lines
2.0 KiB
OCaml

(** Multipole atomic integrals:
{% $$ \langle \chi_i | x | \chi_j \rangle $$ %}
{% $$ \langle \chi_i | y | \chi_j \rangle $$ %}
{% $$ \langle \chi_i | z | \chi_j \rangle $$ %}
{% $$ \langle \chi_i | x^2 | \chi_j \rangle $$ %}
{% $$ \langle \chi_i | y^2 | \chi_j \rangle $$ %}
{% $$ \langle \chi_i | z^2 | \chi_j \rangle $$ %}
*)
open Qcaml_linear_algebra
open Qcaml_gaussian_basis
type t = (Basis.t, Basis.t) Matrix.t array
val matrix_x : t -> (Basis.t, Basis.t) Matrix.t
(** {% $$ \langle \chi_i | x | \chi_j \rangle $$ %} *)
val matrix_y : t -> (Basis.t, Basis.t) Matrix.t
(** {% $$ \langle \chi_i | y | \chi_j \rangle $$ %} *)
val matrix_z : t -> (Basis.t, Basis.t) Matrix.t
(** {% $$ \langle \chi_i | z | \chi_j \rangle $$ %} *)
val matrix_x2 : t -> (Basis.t, Basis.t) Matrix.t
(** {% $$ \langle \chi_i | x^2 | \chi_j \rangle $$ %} *)
val matrix_xy : t -> (Basis.t, Basis.t) Matrix.t
(** {% $$ \langle \chi_i | xy | \chi_j \rangle $$ %} *)
val matrix_yz : t -> (Basis.t, Basis.t) Matrix.t
(** {% $$ \langle \chi_i | yz | \chi_j \rangle $$ %} *)
val matrix_xz : t -> (Basis.t, Basis.t) Matrix.t
(** {% $$ \langle \chi_i | xz | \chi_j \rangle $$ %} *)
val matrix_y2 : t -> (Basis.t, Basis.t) Matrix.t
(** {% $$ \langle \chi_i | y^2 | \chi_j \rangle $$ %} *)
val matrix_z2 : t -> (Basis.t, Basis.t) Matrix.t
(** {% $$ \langle \chi_i | z^2 | \chi_j \rangle $$ %} *)
val matrix_x3 : t -> (Basis.t, Basis.t) Matrix.t
(** {% $$ \langle \chi_i | x^3 | \chi_j \rangle $$ %} *)
val matrix_y3 : t -> (Basis.t, Basis.t) Matrix.t
(** {% $$ \langle \chi_i | y^3 | \chi_j \rangle $$ %} *)
val matrix_z3 : t -> (Basis.t, Basis.t) Matrix.t
(** {% $$ \langle \chi_i | z^3 | \chi_j \rangle $$ %} *)
val matrix_x4 : t -> (Basis.t, Basis.t) Matrix.t
(** {% $$ \langle \chi_i | x^4 | \chi_j \rangle $$ %} *)
val matrix_y4 : t -> (Basis.t, Basis.t) Matrix.t
(** {% $$ \langle \chi_i | y^4 | \chi_j \rangle $$ %} *)
val matrix_z4 : t -> (Basis.t, Basis.t) Matrix.t
(** {% $$ \langle \chi_i | z^4 | \chi_j \rangle $$ %} *)
val of_basis : Basis.t -> t