10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2024-12-22 20:33:36 +01:00
QCaml/ci/lib/determinant_space.ml

344 lines
8.5 KiB
OCaml

(** Data structures for storing the determinant space.
If the space is built as the outer product of all {% $\alpha$ %} and {%
$\beta$ %} determinants, the storage is of type [Spin]. It is sufficient
to have the arrays of {% $\alpha$ %} and {% $\beta$ %} spindeterminants.
Otherwise, the space is of type [Arbitrary].
*)
open Common
open Linear_algebra
type arbitrary_space =
{
det : int array array ;
det_alfa : Spindeterminant.t array ;
det_beta : Spindeterminant.t array ;
index_start : int array;
}
type determinant_storage =
| Arbitrary of arbitrary_space
| Spin of (Spindeterminant.t array * Spindeterminant.t array)
type t =
{
n_alfa : int ;
n_beta : int ;
mo_class : Mo.Class.t ;
mo_basis : Mo.Basis.t ;
determinants : determinant_storage;
}
module Ss = Spindeterminant_space
module Electrons = Particles.Electrons
module Nuclei = Particles.Nuclei
let n_alfa t = t.n_alfa
let n_beta t = t.n_beta
let mo_class t = t.mo_class
let mo_basis t = t.mo_basis
let size t =
match t.determinants with
| Spin (a,b) -> (Array.length a) * (Array.length b)
| Arbitrary a ->
let ndet_a = Array.length a.det_alfa in
a.index_start.(ndet_a)
let determinant_stream t =
match t.determinants with
| Arbitrary a ->
let det_beta = a.det_beta
and det_alfa = a.det_alfa
and det = a.det in
let n_alfa = Array.length det_alfa in
let alfa = ref det_alfa.(0)
and det_i_alfa = ref det.(0) in
let i_alfa = ref 0
and k_beta = ref 0
in
Stream.from (fun _ ->
if !i_alfa = n_alfa then None else
begin
let i_beta = (!det_i_alfa).(!k_beta) in
let beta = det_beta.(i_beta) in
let result =
Some (Determinant.of_spindeterminants (!alfa) beta)
in
incr k_beta;
if !k_beta = Array.length !det_i_alfa then
begin
k_beta := 0;
incr i_alfa;
if !i_alfa < n_alfa then
begin
alfa := det_alfa.(!i_alfa);
det_i_alfa := det.(!i_alfa)
end
end;
result
end
)
| Spin (a,b) ->
let na = Array.length a
and nb = Array.length b in
let i = ref 0
and j = ref 0 in
Stream.from (fun _ ->
if !j < nb then
let result =
Determinant.of_spindeterminants a.(!i) b.(!j)
in
incr i;
if !i = na then (i := 0 ; incr j);
Some result
else
None)
let determinants t = t.determinants
let determinants_array t =
let s = determinant_stream t in
Array.init (size t) (fun _ -> Stream.next s)
(*
let determinant t i =
let alfa, beta =
match t.determinants with
| Arbitrary a ->
let i_alfa =
let index_start = a.index_start in
let rec loop i_alfa =
if index_start.(i_alfa) <= i then
(loop [@tailcall]) (i_alfa+1)
else i_alfa
in loop 0
in
let i_beta = i - a.index_start.(i_alfa) in
let alfa = a.det_alfa.(i_alfa) in
let beta = a.det_beta.(i_beta) in
alfa, beta
| Spin (a,b) ->
let nb = Array.length b in
let k = i / nb in
let j = i - k * nb in
a.(j), b.(k)
in
Determinant.of_spindeterminants alfa beta
*)
let fock_diag det_space det =
let alfa_list =
Determinant.alfa det
|> Spindeterminant.to_list
in
let beta_list =
Determinant.beta det
|> Spindeterminant.to_list
in
let mo_basis = mo_basis det_space in
let mo_num = Mo.Basis.size mo_basis in
let one_e_ints = Mo.Basis.one_e_ints mo_basis
and two_e_ints = Mo.Basis.two_e_ints mo_basis
in
let two_e i j k l = Four_idx_storage.get_phys two_e_ints i j k l in
let build_array list1 list2 =
let result = Array.make (mo_num+1) 0. in
(* Occupied *)
List.iter (fun i ->
let x = one_e_ints%:(i,i) in
result.(i) <- result.(i) +. x;
result.(0) <- result.(0) +. x;
List.iter (fun j ->
if j <> i then
begin
let x = two_e i j i j -. two_e i j j i in
result.(i) <- result.(i) +. x;
result.(0) <- result.(0) +. 0.5 *. x;
end
) list1;
List.iter (fun j ->
begin
let x = two_e i j i j in
result.(i) <- result.(i) +. x;
result.(0) <- result.(0) +. 0.5 *. x;
end
) list2;
) list1;
(* Virtuals*)
List.iter (fun i ->
if result.(i) = 0. then
begin
let x = one_e_ints%:(i,i) in
result.(i) <- result.(i) +. x;
List.iter (fun j ->
let x = two_e i j i j -. two_e i j j i in
result.(i) <- result.(i) +. x;
) list1;
List.iter (fun j ->
begin
let x = two_e i j i j in
result.(i) <- result.(i) +. x;
end
) list2;
end
) (Util.list_range 1 mo_num);
result
in
let alfa, beta =
build_array alfa_list beta_list,
build_array beta_list alfa_list
in
let e = alfa.(0) +. beta.(0) in
alfa.(0) <- e;
beta.(0) <- e;
alfa, beta
let spin_of_mo_basis mo_basis f =
let s = Mo.Basis.simulation mo_basis in
let e = Simulation.electrons s in
let n_alfa = Electrons.n_alfa e
and n_beta = Electrons.n_beta e in
let det_a = f n_alfa
and det_b = f n_beta
in
let mo_class = Ss.mo_class det_a in
let determinants =
let det_alfa = Ss.spin_determinants det_a
and det_beta = Ss.spin_determinants det_b
in
let n_det_beta = Array.length det_beta in
let n_det_alfa = Array.length det_alfa in
let ndet = n_det_alfa * n_det_beta in
Format.printf "Number of determinants : %d %d %d\n%!"
n_det_alfa n_det_beta ndet;
Spin (det_alfa, det_beta)
in
{ n_alfa ; n_beta ; mo_class ; mo_basis ; determinants }
(*
let arbitrary_of_mo_basis mo_basis f =
let s = Mo.Basis.simulation mo_basis in
let e = Simulation.electrons s in
let n_alfa = Electrons.n_alfa e
and n_beta = Electrons.n_beta e in
let det_a = f n_alfa
and det_b = f n_beta
in
let mo_class = Ss.mo_class det_a in
let determinants =
let det_alfa = Ss.spin_determinants det_a
and det_beta = Ss.spin_determinants det_b
in
let n_det_beta = Array.length det_beta in
let n_det_alfa = Array.length det_alfa in
let det = Array.make n_det_alfa
(Array.init n_det_beta (fun i -> i))
in
let index_start = Array.init (n_det_alfa+1) (fun i -> i*n_det_beta) in
let ndet = (index_start.(n_det_alfa)) in
Format.printf "Number of determinants : %d %d %d\n%!"
n_det_alfa n_det_beta ndet;
Arbitrary {
det_alfa ; det_beta ; det ; index_start
}
in
{ n_alfa ; n_beta ; mo_class ; mo_basis ; determinants }
*)
let cas_of_mo_basis mo_basis ~frozen_core n m =
let f n_alfa =
Ss.cas_of_mo_basis mo_basis ~frozen_core n_alfa n m
in
spin_of_mo_basis mo_basis f
let fci_of_mo_basis mo_basis ~frozen_core =
let f n_alfa =
Ss.fci_of_mo_basis mo_basis ~frozen_core n_alfa
in
spin_of_mo_basis mo_basis f
let fci_f12_of_mo_basis mo_basis ~frozen_core mo_num =
let s = Mo.Basis.simulation mo_basis in
let e = Simulation.electrons s in
let n_alfa = Electrons.n_alfa e
and n_beta = Electrons.n_beta e in
let n_core = Mo.Frozen_core.num_mos frozen_core in
let n, m =
(n_alfa + n_beta - n_core),
(mo_num - n_core)
in
let f n_alfa =
Ss.cas_of_mo_basis mo_basis ~frozen_core n_alfa n m
in
let r =
spin_of_mo_basis mo_basis f
in
{ r with mo_class =
Mo.Class.to_list r.mo_class
|> List.rev_map (fun i ->
match i with
| Mo.Class.Virtual i when i > mo_num -> Mo.Class.Auxiliary i
| i -> i)
|> List.rev
|> Mo.Class.of_list }
let cas_f12_of_mo_basis mo_basis ~frozen_core n m mo_num =
let f n_alfa =
Ss.cas_of_mo_basis mo_basis ~frozen_core n_alfa n m
in
let r =
spin_of_mo_basis mo_basis f
in
{ r with mo_class =
Mo.Class.to_list r.mo_class
|> List.rev_map (fun i ->
match i with
| Mo.Class.Virtual i when i > mo_num -> Mo.Class.Auxiliary i
| i -> i)
|> List.rev
|> Mo.Class.of_list
}
let pp ppf t =
Format.fprintf ppf "@[<v 2>[ ";
let i = ref 0 in
determinant_stream t
|> Stream.iter (fun d -> Format.fprintf ppf "@[<v>@[%8d@]@;@[%a@]@]@;" !i
Determinant.pp d; incr i) ;
Format.fprintf ppf "]@]"