10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2025-01-05 10:58:47 +01:00
QCaml/CI/F12CI.ml
2019-10-10 02:01:17 +02:00

260 lines
6.5 KiB
OCaml

open Lacaml.D
module Ds = DeterminantSpace
module De = Determinant
module Sp = Spindeterminant
type t =
{
mo_basis : MOBasis.t ;
det_space : DeterminantSpace.t ;
ci : CI.t ;
hf12_integrals : HF12.t ;
eigensystem : (Mat.t * Vec.t) lazy_t;
}
let ci t = t.ci
let mo_basis t = t.mo_basis
let det_space t = t.det_space
let mo_class t = Ds.mo_class @@ det_space t
let eigensystem t = Lazy.force t.eigensystem
let hf_ij_non_zero hf12_integrals deg_a deg_b ki kj =
let integrals = [
let one_e _ _ _ = 0. in
let hf12_s, hf12_o, hf12m_s, hf12m_o = hf12_integrals in
let kia = De.alfa ki and kib = De.beta ki
and kja = De.alfa kj and kjb = De.beta kj
in
let mo_a =
Bitstring.logand (Sp.bitstring kia) (Sp.bitstring kja)
|> Bitstring.to_list
and mo_b =
Bitstring.logand (Sp.bitstring kib) (Sp.bitstring kjb)
|> Bitstring.to_list
in
let two_e i j k l s s' =
if s' = Spin.other s then
hf12_o.{i,j,k,l} -. 1. *. (
(List.fold_left (fun accu m -> accu +. hf12m_o.{m,i,j,k,l}) 0. mo_a) +.
(List.fold_left (fun accu m -> accu +. hf12m_o.{m,j,i,l,k}) 0. mo_b)
)
else
hf12_s.{i,j,k,l} -. 1. *. (
(List.fold_left (fun accu m -> accu +. hf12m_s.{m,i,j,k,l}) 0. mo_a) +.
(List.fold_left (fun accu m -> accu +. hf12m_s.{m,j,i,l,k}) 0. mo_b)
)
in
(one_e, two_e)
]
in
CIMatrixElement.non_zero integrals deg_a deg_b ki kj
|> List.hd
let dressing_vector ~frozen_core hf12_integrals f12_amplitudes ci =
if Parallel.master then
Printf.printf "Building matrix\n%!";
let det_space =
ci.CI.det_space
in
let m_HF =
let f =
match Ds.determinants det_space with
| Ds.Arbitrary _ -> CI.create_matrix_arbitrary
| Ds.Spin _ -> CI.create_matrix_spin_computed
in
f (fun deg_a deg_b ki kj ->
hf_ij_non_zero hf12_integrals deg_a deg_b ki kj
) det_space
in
Matrix.mm (Lazy.force m_HF) (Matrix.dense_of_mat f12_amplitudes)
let make ~simulation ?(threshold=1.e-12) ~frozen_core ~mo_basis ~aux_basis_filename ?(state=1) () =
let det_space =
DeterminantSpace.fci_of_mo_basis mo_basis ~frozen_core
in
let ci = CI.make ~n_states:state det_space in
let hf12_integrals =
HF12.make ~simulation ~mo_basis ~aux_basis_filename ()
in
let ci_coef, ci_energy =
let x = Lazy.force ci.eigensystem in
Parallel.broadcast (lazy x)
in
let eigensystem = lazy (
let m_H =
Lazy.force ci.CI.m_H
in
let rec iteration ~state psi =
let column_idx = iamax (Mat.to_col_vecs psi).(state-1) in
let delta =
(* delta_i = {% $\sum_j c_j H_{ij}$ %} *)
dressing_vector ~frozen_core hf12_integrals psi ci
|> Matrix.to_mat
in
Printf.printf "Cmax : %e\n" psi.{column_idx,state};
Printf.printf "Norm : %e\n" (sqrt (gemm ~transa:`T delta delta).{state,state});
let f = 1.0 /. psi.{column_idx,state} in
let delta_00 =
(* Delta_00 = {% $\sum_{j \ne x} delta_j c_j / c_x$ %} *)
f *. ( (gemm ~transa:`T delta psi).{state,state} -.
delta.{column_idx,state} *. psi.{column_idx,state} )
in
Printf.printf "Delta_00 : %e %e\n" delta.{column_idx,state} delta_00;
delta.{column_idx,state} <- delta.{column_idx,state} -. delta_00;
let eigenvectors, eigenvalues =
(* Column dressing
*)
let delta = lacpy delta in
Mat.scal f delta;
for k=1 to state-1 do
for i=1 to Mat.dim1 delta do
delta.{i,k} <- delta.{i,state}
done;
done;
let diagonal =
Vec.init (Matrix.dim1 m_H) (fun i ->
if i = column_idx then
Matrix.get m_H i i +. delta.{column_idx,state}
else
Matrix.get m_H i i
)
in
let matrix_prod c =
let w =
Matrix.mm ~transa:`T m_H c
|> Matrix.to_mat
in
let c = Matrix.to_mat c in
for k=1 to state do
for i=1 to (Mat.dim1 w) do
w.{i,k} <- w.{i,k} +. delta.{i,k} *. c.{column_idx, k} ;
w.{column_idx,k} <- w.{column_idx,k} +. delta.{i,k} *. c.{i,k};
done;
w.{column_idx,k} <- w.{column_idx,k} -.
delta.{column_idx,k} *. c.{column_idx,k};
done;
Matrix.dense_of_mat w
in
(* Diagonal dressing *)
(*
let diagonal =
Vec.init (Matrix.dim1 m_H) (fun i ->
Matrix.get m_H i i +.
if (abs_float psi.{i,state} > 1.e-8) then
delta.{i,state} /. psi.{i,state}
else 0.
)
in
let matrix_prod c =
let w =
Matrix.mm ~transa:`T m_H c
|> Matrix.to_mat
in
for i=1 to (Mat.dim1 w) do
w.{i,state} <- w.{i,state} +. delta.{i,state}
done;
Matrix.dense_of_mat w
in
*)
Parallel.broadcast (lazy (
Davidson.make ~threshold:1.e-9 ~guess:psi ~n_states:state diagonal matrix_prod
))
(*
let m_H = Matrix.to_mat m_H |> lacpy in
*)
(* DIAGONAL TEST
for i=1 to Mat.dim1 m_H do
if (abs_float psi.{i,state} > 1.e-8) then
m_H.{i,i} <- m_H.{i,i} +. delta.{i,state} /. psi.{i,state};
done;
*)
(* COLUMN TEST
for i=1 to Mat.dim1 m_H do
let d = delta.{i,state} /. psi.{column_idx,state} in
m_H.{i,column_idx} <- m_H.{i,column_idx} +. d;
if (i <> column_idx) then
begin
m_H.{column_idx,i} <- m_H.{column_idx,i} +. d;
m_H.{column_idx,column_idx} <- m_H.{column_idx,column_idx} -.
d *. psi.{i,state}
end
done;
*)
(*
let m_v = syev m_H in
m_H, m_v
*)
in
Vec.iter (fun energy -> Printf.printf "%g\t" energy) eigenvalues;
print_newline ();
let conv =
1.0 -. abs_float ( dot
(Mat.to_col_vecs psi).(0)
(Mat.to_col_vecs eigenvectors).(0) )
in
if Parallel.master then
Printf.printf "F12 Convergence : %e %f\n" conv (eigenvalues.{state}
+. Simulation.nuclear_repulsion simulation);
if conv > threshold then
iteration ~state eigenvectors
else
let eigenvalues =
Vec.map (fun x -> x +. ci.CI.e_shift) eigenvalues
in
eigenvectors, eigenvalues
in
iteration ~state ci_coef
)
in
{ mo_basis ; det_space ; ci ; hf12_integrals ; eigensystem }