10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2024-11-19 04:22:21 +01:00
QCaml/Basis/TwoElectronRRVectorized.ml
2018-01-29 23:44:48 +01:00

388 lines
16 KiB
OCaml

open Util
let cutoff2 = cutoff *. cutoff
exception NullQuartet
(** Horizontal and Vertical Recurrence Relations (HVRR) *)
let hvrr_two_e_vector m (angMom_a, angMom_b, angMom_c, angMom_d)
(totAngMom_a, totAngMom_b, totAngMom_c, totAngMom_d)
(maxm, zero_m_array)
(expo_b, expo_d)
(expo_inv_p, expo_inv_q)
(center_ab, center_cd, center_pq)
coef_prod map
=
let ncoef = (Array.length coef_prod) in
let empty =
Array.make ncoef 0.
in
let totAngMom_a = Angular_momentum.to_int totAngMom_a
and totAngMom_b = Angular_momentum.to_int totAngMom_b
and totAngMom_c = Angular_momentum.to_int totAngMom_c
and totAngMom_d = Angular_momentum.to_int totAngMom_d
in
(** Vertical recurrence relations *)
let rec vrr0_v m angMom_a = function
| 0 -> Array.mapi (fun k c -> c *. zero_m_array.(k).(m)) coef_prod
| 1 -> let i = if angMom_a.(0) = 1 then 0 else if angMom_a.(1) = 1 then 1 else 2
in
let f = expo_b *. (Coordinate.coord center_ab i) in
Array.mapi (fun k c -> c *. expo_inv_p *.
( (Coordinate.coord center_pq.(k) i) *. zero_m_array.(k).(m+1)
-. f *. zero_m_array.(k).(m) ) ) coef_prod
| totAngMom_a ->
let key = Zkey.of_int_tuple (Zkey.Three
(angMom_a.(0)+1, angMom_a.(1)+1, angMom_a.(2)+1) )
in
let (found, result) =
try (true, Zmap.find map.(m) key) with
| Not_found -> (false,
let am = [| angMom_a.(0) ; angMom_a.(1) ; angMom_a.(2) |]
and amm = [| angMom_a.(0) ; angMom_a.(1) ; angMom_a.(2) |]
and xyz =
match angMom_a with
| [|0;0;_|] -> 2
| [|0;_;_|] -> 1
| _ -> 0
in
am.(xyz) <- am.(xyz) - 1;
amm.(xyz) <- amm.(xyz) - 2;
if am.(xyz) < 0 then
empty
else
let v1 =
let f =
-. expo_b *. expo_inv_p *. (Coordinate.coord center_ab xyz)
in
Array.mapi (fun k v1k -> f *. v1k) (vrr0_v m am (totAngMom_a-1) )
in
let p1 =
Array.mapi (fun k v2k -> v1.(k) +. expo_inv_p *. (Coordinate.coord center_pq.(k) xyz) *. v2k) (vrr0_v (m+1) am (totAngMom_a-1))
in
if amm.(xyz) < 0 then p1 else
let v1 = vrr0_v m amm (totAngMom_a-2)
and v2 = vrr0_v (m+1) amm (totAngMom_a-2)
and f = (float_of_int am.(xyz)) *. expo_inv_p *. 0.5
in
Array.mapi (fun k _ -> p1.(k) +.
f *. (v1.(k) +. v2.(k) *. expo_inv_p ) ) coef_prod
)
in
if not found then
Zmap.add map.(m) key result;
result
and vrr_v m angMom_a angMom_c totAngMom_a totAngMom_c =
match (totAngMom_a, totAngMom_c) with
| (0,0) -> Array.mapi (fun k c -> c *. zero_m_array.(k).(m)) coef_prod
| (_,0) -> vrr0_v m angMom_a totAngMom_a
| (_,_) ->
let key = Zkey.of_int_tuple (Zkey.Six
((angMom_a.(0)+1, angMom_a.(1)+1, angMom_a.(2)+1),
(angMom_c.(0)+1, angMom_c.(1)+1, angMom_c.(2)+1)) )
in
let (found, result) =
try (true, Zmap.find map.(m) key) with
| Not_found -> (false,
let am = [| angMom_a.(0) ; angMom_a.(1) ; angMom_a.(2) |]
and cm = [| angMom_c.(0) ; angMom_c.(1) ; angMom_c.(2) |]
and cmm = [| angMom_c.(0) ; angMom_c.(1) ; angMom_c.(2) |]
and xyz =
match angMom_c with
| [|0;0;_|] -> 2
| [|0;_;_|] -> 1
| _ -> 0
in
am.(xyz) <- am.(xyz) - 1;
cm.(xyz) <- cm.(xyz) - 1;
cmm.(xyz) <- cmm.(xyz) - 2;
if cm.(xyz) < 0 then
empty
else
let v1 =
vrr_v m angMom_a cm totAngMom_a (totAngMom_c-1)
and v2 =
vrr_v (m+1) angMom_a cm totAngMom_a (totAngMom_c-1)
in
let p1 =
Array.mapi (fun k _ ->
-. v1.(k) *. expo_d.(k) *. expo_inv_q.(k) *. (Coordinate.coord center_cd.(k) xyz)
-. v2.(k) *. (expo_inv_q.(k) *. (Coordinate.coord center_pq.(k) xyz))
) coef_prod
in
let p2 =
if cmm.(xyz) < 0 then p1 else
let v1 =
vrr_v m angMom_a cmm totAngMom_a (totAngMom_c-2)
and v2 =
vrr_v (m+1) angMom_a cmm totAngMom_a (totAngMom_c-2)
and fcm =
(float_of_int cm.(xyz)) *. 0.5
in
Array.mapi (fun k _ -> p1.(k) +. fcm *. expo_inv_q.(k)
*. (v1.(k) +. expo_inv_q.(k) *. v2.(k))
) coef_prod
in
if (am.(xyz) < 0) || (cm.(xyz) < 0) then p2 else
let v =
vrr_v (m+1) am cm (totAngMom_a-1) (totAngMom_c-1)
and fa =
(float_of_int angMom_a.(xyz)) *. expo_inv_p *. 0.5
in
Array.mapi (fun k _ ->
p2.(k) -. fa *. expo_inv_q.(k) *. v.(k)
) coef_prod
)
in
if not found then
Zmap.add map.(m) key result;
result
(** Horizontal recurrence relations *)
and hrr0_v m angMom_a angMom_b angMom_c
totAngMom_a totAngMom_b totAngMom_c =
match totAngMom_b with
| 0 ->
begin
match (totAngMom_a, totAngMom_c) with
| (0,0) -> Array.mapi (fun k c -> c *. zero_m_array.(k).(m)) coef_prod
| (_,0) -> vrr0_v m angMom_a totAngMom_a
| (_,_) -> vrr_v m angMom_a angMom_c totAngMom_a totAngMom_c
end
| 1 -> let xyz = if angMom_b.(0) = 1 then 0 else if angMom_b.(1) = 1 then 1 else 2 in
let ap = [| angMom_a.(0) ; angMom_a.(1) ; angMom_a.(2) |] in
ap.(xyz) <- ap.(xyz) + 1;
let v1 =
vrr_v m ap angMom_c (totAngMom_a+1) totAngMom_c
and v2 =
vrr_v m angMom_a angMom_c totAngMom_a totAngMom_c
and f = Coordinate.coord center_ab xyz
in
Array.map2 (fun v1 v2 -> v1 +. v2 *. f) v1 v2
| _ ->
let ap = [| angMom_a.(0) ; angMom_a.(1) ; angMom_a.(2) |]
and bm = [| angMom_b.(0) ; angMom_b.(1) ; angMom_b.(2) |]
and xyz =
match angMom_b with
| [|0;0;_|] -> 2
| [|0;_;_|] -> 1
| _ -> 0
in
ap.(xyz) <- ap.(xyz) + 1;
bm.(xyz) <- bm.(xyz) - 1;
if (bm.(xyz) < 0) then empty else
let h1 =
hrr0_v m ap bm angMom_c (totAngMom_a+1) (totAngMom_b-1) totAngMom_c
and h2 =
hrr0_v m angMom_a bm angMom_c totAngMom_a (totAngMom_b-1) totAngMom_c
and f = (Coordinate.coord center_ab xyz)
in Array.map2 (fun h1 h2 -> h1 +. h2 *. f) h1 h2
and hrr_v m angMom_a angMom_b angMom_c angMom_d
totAngMom_a totAngMom_b totAngMom_c totAngMom_d =
match (totAngMom_b, totAngMom_d) with
| (0,0) -> vrr_v m angMom_a angMom_c totAngMom_a totAngMom_c
| (_,0) -> hrr0_v m angMom_a angMom_b angMom_c totAngMom_a totAngMom_b totAngMom_c
| (_,_) ->
let cp = [| angMom_c.(0) ; angMom_c.(1) ; angMom_c.(2) |]
and dm = [| angMom_d.(0) ; angMom_d.(1) ; angMom_d.(2) |]
and xyz =
match angMom_d with
| [|0;0;_|] -> 2
| [|0;_;_|] -> 1
| _ -> 0
in
cp.(xyz) <- cp.(xyz) + 1;
dm.(xyz) <- dm.(xyz) - 1;
let h1 =
hrr_v m angMom_a angMom_b cp dm totAngMom_a totAngMom_b (totAngMom_c+1) (totAngMom_d-1)
and h2 =
hrr_v m angMom_a angMom_b angMom_c dm totAngMom_a totAngMom_b totAngMom_c (totAngMom_d-1)
in
Array.mapi (fun k center_cd -> h1.(k) +. h2.(k) *. (Coordinate.coord center_cd xyz)) center_cd
in
hrr_v m angMom_a angMom_b angMom_c angMom_d totAngMom_a totAngMom_b
totAngMom_c totAngMom_d
let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q : float Zmap.t =
let shell_a = shell_p.(0).Shell_pair.shell_a
and shell_b = shell_p.(0).Shell_pair.shell_b
and shell_c = shell_q.(0).Shell_pair.shell_a
and shell_d = shell_q.(0).Shell_pair.shell_b
in
let maxm =
let open Angular_momentum in
(to_int @@ Contracted_shell.totAngMom shell_a) + (to_int @@ Contracted_shell.totAngMom shell_b)
+ (to_int @@ Contracted_shell.totAngMom shell_c) + (to_int @@ Contracted_shell.totAngMom shell_d)
in
(* Pre-computation of integral class indices *)
let class_indices =
Angular_momentum.zkey_array
(Angular_momentum.Quartet
Contracted_shell.(totAngMom shell_a, totAngMom shell_b,
totAngMom shell_c, totAngMom shell_d))
in
let contracted_class =
Array.make (Array.length class_indices) 0.;
in
(* Compute all integrals in the shell for each pair of significant shell pairs *)
begin
match Contracted_shell.(totAngMom shell_a, totAngMom shell_b,
totAngMom shell_c, totAngMom shell_d) with
| Angular_momentum.(S,S,S,S) ->
contracted_class.(0) <-
Array.fold_left
(fun accu shell_ab -> accu +.
Array.fold_left (fun accu shell_cd ->
let coef_prod =
shell_ab.Shell_pair.coef *. shell_cd.Shell_pair.coef
in
(** Screening on the product of coefficients *)
try
if (abs_float coef_prod) < 1.e-3*.cutoff then
raise NullQuartet;
let expo_pq_inv =
shell_ab.Shell_pair.expo_inv +. shell_cd.Shell_pair.expo_inv
in
let center_pq =
Coordinate.(shell_ab.Shell_pair.center |- shell_cd.Shell_pair.center)
in
let norm_pq_sq =
Coordinate.dot center_pq center_pq
in
let zero_m_array =
zero_m ~maxm ~expo_pq_inv ~norm_pq_sq
in
accu +. coef_prod *. zero_m_array.(0)
with NullQuartet -> accu
) 0. shell_q
) 0. shell_p
| _ ->
Array.iter (fun shell_ab ->
let b = shell_ab.Shell_pair.j in
let common =
Array.mapi (fun idx shell_cd ->
let coef_prod =
shell_ab.Shell_pair.coef *. shell_cd.Shell_pair.coef
in
let expo_pq_inv =
shell_ab.Shell_pair.expo_inv +. shell_cd.Shell_pair.expo_inv
in
let center_pq =
Coordinate.(shell_ab.Shell_pair.center |- shell_cd.Shell_pair.center)
in
let norm_pq_sq =
Coordinate.dot center_pq center_pq
in
let zero_m_array =
zero_m ~maxm ~expo_pq_inv ~norm_pq_sq
in
let d = shell_cd.Shell_pair.j in
(zero_m_array, shell_cd.Shell_pair.expo_inv,
Contracted_shell.expo shell_d d, shell_cd.Shell_pair.center_ab,
center_pq,coef_prod,idx)
) shell_q
|> Array.to_list
|> List.filter (fun (zero_m_array, expo_inv, d, center_cd,
center_pq,coef_prod,idx) -> abs_float coef_prod >= 1.e-4 *. cutoff)
|> Array.of_list
in
let zero_m_array = Array.map (fun (zero_m_array, expo_inv, d, center_cd,
center_pq,coef_prod,idx) -> zero_m_array) common
and expo_inv = Array.map (fun (zero_m_array, expo_inv, d, center_cd,
center_pq,coef_prod,idx) -> expo_inv ) common
and d = Array.map (fun (zero_m_array, expo_inv, d, center_cd,
center_pq,coef_prod,idx) -> d) common
and center_cd = Array.map (fun (zero_m_array, expo_inv, d, center_cd,
center_pq,coef_prod,idx) -> center_cd) common
and center_pq = Array.map (fun (zero_m_array, expo_inv, d, center_cd,
center_pq,coef_prod,idx) -> center_pq) common
and coef_prod = Array.map (fun (zero_m_array, expo_inv, d, center_cd,
center_pq,coef_prod,idx) -> coef_prod) common
and idx = Array.map (fun (zero_m_array, expo_inv, d, center_cd,
center_pq,coef_prod,idx) -> idx) common
in
(* Compute the integral class from the primitive shell quartet *)
let map = Array.init maxm (fun _ -> Zmap.create (Array.length class_indices)) in
Array.iteri (fun i key ->
let a = Zkey.to_int_array Zkey.Kind_12 key in
let (angMomA,angMomB,angMomC,angMomD) =
( [| a.(0) ; a.(1) ; a.(2) |],
[| a.(3) ; a.(4) ; a.(5) |],
[| a.(6) ; a.(7) ; a.(8) |],
[| a.(9) ; a.(10) ; a.(11) |] )
in
let norm =
Array.map (fun shell_cd ->
shell_ab.Shell_pair.norm_fun angMomA angMomB *. shell_cd.Shell_pair.norm_fun angMomC angMomD
) shell_q
in
let integral =
hvrr_two_e_vector 0 (angMomA, angMomB, angMomC, angMomD)
(Contracted_shell.totAngMom shell_a, Contracted_shell.totAngMom shell_b,
Contracted_shell.totAngMom shell_c, Contracted_shell.totAngMom shell_d)
(maxm, zero_m_array)
(Contracted_shell.expo shell_b b, d)
(shell_ab.Shell_pair.expo_inv, expo_inv)
(shell_ab.Shell_pair.center_ab, center_cd, center_pq)
coef_prod map
|> Array.mapi (fun i x -> x *. norm.(idx.(i)) )
in
let x = Array.fold_left (+.) 0. integral in
contracted_class.(i) <- contracted_class.(i) +. x
) class_indices
) shell_p
end;
let result =
Zmap.create (Array.length contracted_class)
in
Array.iteri (fun i key -> Zmap.add result key contracted_class.(i)) class_indices;
result
(** Computes all the two-electron integrals of the contracted shell quartet *)
let contracted_class ~zero_m shell_a shell_b shell_c shell_d : float Zmap.t =
let shell_p = Shell_pair.create_array shell_a shell_b
and shell_q = Shell_pair.create_array shell_c shell_d
in
contracted_class_shell_pairs ~zero_m shell_p shell_q