10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2024-11-19 04:22:21 +01:00
QCaml/CI/F12CI.ml

470 lines
12 KiB
OCaml

open Lacaml.D
type t =
{
mo_basis : MOBasis.t ;
aux_basis : MOBasis.t ;
det_space : DeterminantSpace.t ;
ci : CI.t ;
eigensystem : (Mat.t * Vec.t) lazy_t;
}
let ci t = t.ci
let mo_basis t = t.mo_basis
let det_space t = t.det_space
let mo_class t = DeterminantSpace.mo_class @@ det_space t
let eigensystem t = Lazy.force t.eigensystem
let f12_integrals mo_basis =
let two_e_ints = MOBasis.f12_ints mo_basis in
( (fun _ _ _ -> 0.),
(fun i j k l s s' ->
if (i=k && j<>l) || (j=l && i<>k) then
0.
else
begin
let ijkl = F12.get_phys two_e_ints i j k l
in
(*
if s' = Spin.other s then
(* Minus sign because we swap spin variables
instead of orbital variables *)
0.375 *. ijkl +. 0.125 *. ijlk
else
0.25 *. (ijkl -. ijlk)
*)
if s' = Spin.other s then
ijkl
else
let ijlk = F12.get_phys two_e_ints i j l k
in
ijkl -. ijlk
end
) )
let h_ij mo_basis ki kj =
let integrals =
List.map (fun f -> f mo_basis)
[ CI.h_integrals ]
in
CIMatrixElement.make integrals ki kj
|> List.hd
let f_ij mo_basis ki kj =
let integrals =
List.map (fun f -> f mo_basis)
[ f12_integrals ]
in
CIMatrixElement.make integrals ki kj
|> List.hd
let hf_ij mo_basis ki kj =
let integrals =
List.map (fun f -> f mo_basis)
[ CI.h_integrals ; f12_integrals ]
in
CIMatrixElement.make integrals ki kj
let is_a_double det_space =
let mo_class = DeterminantSpace.mo_class det_space in
let mo_num = Array.length @@ MOClass.mo_class_array mo_class in
let m l =
List.fold_left (fun accu i ->
let j = i-1 in Bitstring.logor accu (Bitstring.shift_left_one mo_num j)
) (Bitstring.zero mo_num) l
in
let aux_mask = m (MOClass.auxiliary_mos mo_class) in
fun k ->
let alfa =
Determinant.alfa k
|> Spindeterminant.bitstring
in
let beta =
Determinant.beta k
|> Spindeterminant.bitstring
in
let a = Bitstring.logand aux_mask alfa
and b = Bitstring.logand aux_mask beta
in
match Bitstring.popcount a + Bitstring.popcount b with
| 2 -> true
| _ -> false
let p12 det_space =
let mo_class = DeterminantSpace.mo_class det_space in
let mo_num = Array.length @@ MOClass.mo_class_array mo_class in
let m l =
List.fold_left (fun accu i ->
let j = i-1 in Bitstring.logor accu (Bitstring.shift_left_one mo_num j)
) (Bitstring.zero mo_num) l
in
let aux_mask = m (MOClass.auxiliary_mos mo_class) in
let not_aux_mask =
Bitstring.(shift_left_one mo_num mo_num |> minus_one)
in
fun k ->
let alfa =
Determinant.alfa k
|> Spindeterminant.bitstring
in
let beta =
Determinant.beta k
|> Spindeterminant.bitstring
in
let a = Bitstring.logand aux_mask alfa
and b = Bitstring.logand aux_mask beta
in
match Bitstring.popcount a, Bitstring.popcount b with
| 2, 0
| 0, 2 -> Some (Determinant.negate_phase k)
| 1, 1 -> Some (Determinant.of_spindeterminants
(Spindeterminant.of_bitstring @@
Bitstring.(logor b (logand not_aux_mask alfa)) )
(Spindeterminant.of_bitstring @@
Bitstring.(logor a (logand not_aux_mask beta))
) )
(*
| 1, 0
| 0, 1 -> Some (Determinant.negate_phase k)
| 0, 1 -> Some (Determinant.vac 1)
*)
| _ -> None
let dressing_vector ~frozen_core aux_basis f12_amplitudes ci =
if Parallel.master then
Printf.printf "Building matrix\n%!";
(* Determinants of the FCI space as a list *)
let in_dets =
DeterminantSpace.determinant_stream ci.CI.det_space
|> Util.stream_to_list
in
(* Stream that generates only singly and doubly excited determinants
wrt FCI space *)
let out_dets_stream =
(* Stream that generates all determinants of FCI space *)
let s =
DeterminantSpace.fci_of_mo_basis ~frozen_core aux_basis
|> DeterminantSpace.determinant_stream
in
(* Select only doubly excited determinants wrt FCI space *)
Stream.from (fun _ ->
try
let p12 = p12 ci.CI.det_space in
let rec result () =
let ki = Stream.next s in
match p12 ki with
| Some ki' -> Some (ki, ki')
| None -> result ()
in
result ()
with Stream.Failure -> None
)
in
let make_h_and_f alpha_list =
let rec col_vecs_list accu_H accu_F = function
| [] ->
List.rev accu_H,
List.rev accu_F
| (ki, ki') :: rest ->
begin
let h, f =
List.map (fun kj ->
match hf_ij aux_basis kj ki with
| [ a ; b ] -> a, b
| _ -> assert false ) in_dets
|> List.split
in
let f' =
List.map (fun kj -> f_ij aux_basis kj ki') in_dets
in
let h = Vec.of_list h in
let f = Vec.of_list f in
let f' = Vec.of_list f' in
scal 0.375 f;
scal 0.125 f';
let f = Vec.add f f' in
col_vecs_list (h::accu_H) (f::accu_F) rest
end
in
let h, f =
col_vecs_list [] [] alpha_list
in
Mat.of_col_vecs_list h,
Mat.of_col_vecs_list f
in
let m_HF =
let batch_size = 1 + 1_000_000 / (Mat.dim1 f12_amplitudes) in
let input_stream =
Stream.from (fun i ->
let rec make_batch accu = function
| 0 -> accu
| n -> try
let alpha = Stream.next out_dets_stream in
let accu = alpha :: accu in
make_batch accu (n-1)
with Stream.Failure -> accu
in
let result = make_batch [] batch_size in
if result = [] then None else Some result
)
in
let iteration input =
Printf.printf ".%!";
let m_H_aux, m_F_aux = make_h_and_f input in
let m_HF =
gemm m_H_aux m_F_aux ~transb:`T
in
gemm m_HF f12_amplitudes
in
let result =
let x =
try [ Stream.next out_dets_stream ]
with Stream.Failure -> failwith "Auxiliary basis set does not produce any excited determinant"
in
iteration x
in
input_stream
|> Farm.run ~ordered:false ~f:iteration
|> Stream.iter (fun hf ->
ignore @@ Mat.add result hf ~c:result );
Printf.printf "\n";
Parallel.broadcast (lazy result)
in
if Parallel.master then Printf.printf "Done\n%!";
Matrix.dense_of_mat m_HF
let make ~simulation ?(threshold=1.e-12) ~frozen_core ~mo_basis ~aux_basis_filename ?(state=1) () =
let f12 = Util.of_some @@ Simulation.f12 simulation in
let mo_num = MOBasis.size mo_basis in
Printf.printf "Add aux basis\n%!";
(* Add auxiliary basis set *)
let s =
let charge = Charge.to_int @@ Simulation.charge simulation
and multiplicity = Electrons.multiplicity @@ Simulation.electrons simulation
and nuclei = Simulation.nuclei simulation
in
let general_basis =
Basis.general_basis @@ Simulation.basis simulation
in
GeneralBasis.combine [
general_basis ; GeneralBasis.read aux_basis_filename
]
|> Basis.of_nuclei_and_general_basis nuclei
|> Simulation.make ~f12 ~charge ~multiplicity ~nuclei
in
let aux_basis =
MOBasis.of_mo_basis s mo_basis
in
let () =
ignore @@ MOBasis.f12_ints aux_basis
in
let () =
ignore @@ MOBasis.two_e_ints aux_basis
in
let det_space =
DeterminantSpace.fci_f12_of_mo_basis aux_basis ~frozen_core mo_num
in
let ci = CI.make ~n_states:state det_space in
let ci_coef, ci_energy =
let x = Lazy.force ci.eigensystem in
Parallel.broadcast (lazy x)
in
let e_shift =
let det =
DeterminantSpace.determinant_stream det_space
|> Stream.next
in
h_ij aux_basis det det
in
let eigensystem = lazy (
let m_H =
Lazy.force ci.CI.m_H
in
let rec iteration ~state psi =
let column_idx = iamax (Mat.to_col_vecs psi).(state-1) in
let delta =
(* delta_i = {% $\sum_j c_j H_{ij}$ %} *)
dressing_vector ~frozen_core aux_basis psi ci
|> Matrix.to_mat
in
Printf.printf "Cmax : %e\n" psi.{column_idx,state};
Printf.printf "Norm : %e\n" (sqrt (gemm ~transa:`T delta delta).{state,state});
let f = 1.0 /. psi.{column_idx,state} in
let delta_00 =
(* Delta_00 = {% $\sum_{j \ne x} delta_j c_j / c_x$ %} *)
f *. ( (gemm ~transa:`T delta psi).{state,state} -.
delta.{column_idx,state} *. psi.{column_idx,state} )
in
Printf.printf "Delta_00 : %e %e\n" delta.{column_idx,state} delta_00;
delta.{column_idx,state} <- delta.{column_idx,state} -. delta_00;
let eigenvectors, eigenvalues =
(* Column dressing
*)
let delta = lacpy delta in
Mat.scal f delta;
for k=1 to state-1 do
for i=1 to Mat.dim1 delta do
delta.{i,k} <- delta.{i,state}
done;
done;
let diagonal =
Vec.init (Matrix.dim1 m_H) (fun i ->
if i = column_idx then
Matrix.get m_H i i +. delta.{column_idx,state}
else
Matrix.get m_H i i
)
in
let matrix_prod c =
let w =
Matrix.mm ~transa:`T m_H c
|> Matrix.to_mat
in
let c = Matrix.to_mat c in
for k=1 to state do
for i=1 to (Mat.dim1 w) do
w.{i,k} <- w.{i,k} +. delta.{i,k} *. c.{column_idx, k} ;
w.{column_idx,k} <- w.{column_idx,k} +. delta.{i,k} *. c.{i,k};
done;
w.{column_idx,k} <- w.{column_idx,k} -.
delta.{column_idx,k} *. c.{column_idx,k};
done;
Matrix.dense_of_mat w
in
(* Diagonal dressing *)
(*
let diagonal =
Vec.init (Matrix.dim1 m_H) (fun i ->
Matrix.get m_H i i +.
if (abs_float psi.{i,state} > 1.e-8) then
delta.{i,state} /. psi.{i,state}
else 0.
)
in
let matrix_prod c =
let w =
Matrix.mm ~transa:`T m_H c
|> Matrix.to_mat
in
for i=1 to (Mat.dim1 w) do
w.{i,state} <- w.{i,state} +. delta.{i,state}
done;
Matrix.dense_of_mat w
in
*)
Parallel.broadcast (lazy (
Davidson.make ~threshold:1.e-9 ~guess:psi ~n_states:state diagonal matrix_prod
))
(*
let m_H = Matrix.to_mat m_H |> lacpy in
*)
(* DIAGONAL TEST
for i=1 to Mat.dim1 m_H do
if (abs_float psi.{i,state} > 1.e-8) then
m_H.{i,i} <- m_H.{i,i} +. delta.{i,state} /. psi.{i,state};
done;
*)
(* COLUMN TEST
for i=1 to Mat.dim1 m_H do
let d = delta.{i,state} /. psi.{column_idx,state} in
m_H.{i,column_idx} <- m_H.{i,column_idx} +. d;
if (i <> column_idx) then
begin
m_H.{column_idx,i} <- m_H.{column_idx,i} +. d;
m_H.{column_idx,column_idx} <- m_H.{column_idx,column_idx} -.
d *. psi.{i,state}
end
done;
*)
(*
let m_v = syev m_H in
m_H, m_v
*)
in
Vec.iter (fun energy -> Printf.printf "%g\t" energy) eigenvalues;
print_newline ();
let conv =
1.0 -. abs_float ( dot
(Mat.to_col_vecs psi).(0)
(Mat.to_col_vecs eigenvectors).(0) )
in
if Parallel.master then
Printf.printf "F12 Convergence : %e %f\n" conv (eigenvalues.{state} +. e_shift
+. Simulation.nuclear_repulsion simulation);
if conv > threshold then
iteration ~state eigenvectors
else
let eigenvalues =
Vec.map (fun x -> x +. e_shift) eigenvalues
in
eigenvectors, eigenvalues
in
iteration ~state ci_coef
)
in
{ mo_basis ; aux_basis ; det_space ; ci ; eigensystem }