mirror of
https://gitlab.com/scemama/QCaml.git
synced 2024-11-18 12:03:40 +01:00
217 lines
5.8 KiB
OCaml
217 lines
5.8 KiB
OCaml
open Lacaml.D
|
|
|
|
module Ds = Determinant_space
|
|
|
|
type t =
|
|
{
|
|
det_space : Ds.t ;
|
|
m_H : Matrix.t lazy_t ;
|
|
m_S2 : Matrix.t lazy_t ;
|
|
eigensystem : (Mat.t * Vec.t) lazy_t;
|
|
n_states : int;
|
|
}
|
|
|
|
let det_space t = t.det_space
|
|
|
|
let n_states t = t.n_states
|
|
|
|
let m_H t = Lazy.force t.m_H
|
|
|
|
let m_S2 t = Lazy.force t.m_S2
|
|
|
|
let eigensystem t = Lazy.force t.eigensystem
|
|
|
|
let eigenvectors t =
|
|
let (x,_) = eigensystem t in x
|
|
|
|
let eigenvalues t =
|
|
let (_,x) = eigensystem t in x
|
|
|
|
let h_integrals mo_basis =
|
|
let one_e_ints = MOBasis.one_e_ints mo_basis
|
|
and two_e_ints = MOBasis.two_e_ints mo_basis
|
|
in
|
|
( (fun i j _ -> one_e_ints.{i,j}),
|
|
(fun i j k l s s' ->
|
|
if s' = Spin.other s then
|
|
ERI.get_phys two_e_ints i j k l
|
|
else
|
|
(ERI.get_phys two_e_ints i j k l) -.
|
|
(ERI.get_phys two_e_ints i j l k)
|
|
) )
|
|
|
|
|
|
|
|
let h_ij mo_basis ki kj =
|
|
let integrals =
|
|
List.map (fun f -> f mo_basis)
|
|
[ h_integrals ]
|
|
in
|
|
CIMatrixElement.make integrals ki kj
|
|
|> List.hd
|
|
|
|
|
|
let create_matrix_arbitrary f det_space =
|
|
lazy (
|
|
let det =
|
|
match Ds.determinants det_space with
|
|
| Ds.Arbitrary a -> a
|
|
| _ -> assert false
|
|
in
|
|
|
|
let ndet = Ds.size det_space in
|
|
|
|
let v = Vec.make0 ndet in
|
|
|
|
Array.init ndet
|
|
(fun i -> let ki = det.(i) in
|
|
Printf.eprintf "%8d / %8d\r%!" i ndet;
|
|
let j = ref 1 in
|
|
Ds.determinant_stream det_space
|
|
|> Stream.iter (fun kj -> v.{!j} <- f ki kj ; incr j);
|
|
Vector.sparse_of_vec v)
|
|
|> Matrix.sparse_of_vector_array
|
|
)
|
|
|
|
|
|
(* Create a matrix using the fact that the determinant space is made of
|
|
the outer product of spindeterminants. *)
|
|
let create_matrix_spin f det_space =
|
|
lazy (
|
|
let ndet = Ds.size det_space in
|
|
let a, b =
|
|
match Ds.determinants det_space with
|
|
| Ds.Spin (a,b) -> (a,b)
|
|
| _ -> assert false
|
|
in
|
|
let n_alfa = Array.length a in
|
|
let n_beta = Array.length b in
|
|
let result = Array.init ndet (fun _ -> []) in
|
|
|
|
(** Update function when ki and kj are connected *)
|
|
let update i j ki kj =
|
|
let x = f ki kj in
|
|
if abs_float x > Constants.epsilon then
|
|
result.(i) <- (j, x) :: result.(i) ;
|
|
in
|
|
|
|
(** Array of (list of singles, list of doubles) in the beta spin *)
|
|
let degree_bb =
|
|
Array.map (fun det_i ->
|
|
let deg = Spindeterminant.degree det_i in
|
|
let doubles =
|
|
Array.mapi (fun i det_j ->
|
|
let d = deg det_j in
|
|
if d < 3 then
|
|
Some (i,d,det_j)
|
|
else
|
|
None
|
|
) b
|
|
|> Array.to_list
|
|
|> Util.list_some
|
|
in
|
|
let singles =
|
|
List.filter (fun (i,d,det_j) -> d < 2) doubles
|
|
|> List.map (fun (i,_,det_j) -> (i,det_j))
|
|
in
|
|
let doubles =
|
|
List.map (fun (i,_,det_j) -> (i,det_j)) doubles
|
|
in
|
|
(singles, doubles)
|
|
) b
|
|
in
|
|
let a = Array.to_list a
|
|
and b = Array.to_list b
|
|
in
|
|
let i = ref 0 in
|
|
List.iteri (fun ia i_alfa ->
|
|
Printf.eprintf "%8d / %8d\r%!" ia n_alfa;
|
|
let j = ref 1 in
|
|
let deg_a = Spindeterminant.degree i_alfa in
|
|
List.iter (fun j_alfa ->
|
|
let degree_a = deg_a j_alfa in
|
|
begin
|
|
match degree_a with
|
|
| 2 ->
|
|
let i' = ref !i in
|
|
List.iteri (fun ib i_beta ->
|
|
let ki = Determinant.of_spindeterminants i_alfa i_beta in
|
|
let kj = Determinant.of_spindeterminants j_alfa i_beta in
|
|
update !i' (ib + !j) ki kj;
|
|
incr i';
|
|
) b;
|
|
| 1 ->
|
|
let i' = ref !i in
|
|
List.iteri (fun ib i_beta ->
|
|
let ki = Determinant.of_spindeterminants i_alfa i_beta in
|
|
let singles, _ = degree_bb.(ib) in
|
|
List.iter (fun (j', j_beta) ->
|
|
let kj = Determinant.of_spindeterminants j_alfa j_beta in
|
|
update !i' (j' + !j) ki kj
|
|
) singles;
|
|
incr i';
|
|
) b;
|
|
| 0 ->
|
|
let i' = ref !i in
|
|
List.iteri (fun ib i_beta ->
|
|
let ki = Determinant.of_spindeterminants i_alfa i_beta in
|
|
let _singles, doubles = degree_bb.(ib) in
|
|
List.iter (fun (j', j_beta) ->
|
|
let kj = Determinant.of_spindeterminants j_alfa j_beta in
|
|
update !i' (j' + !j) ki kj
|
|
) doubles;
|
|
incr i';
|
|
) b;
|
|
| _ -> ();
|
|
end;
|
|
j := !j + n_beta
|
|
) a;
|
|
i := !i + n_beta
|
|
) a;
|
|
|
|
Array.map (fun l ->
|
|
List.rev l
|
|
|> Vector.sparse_of_assoc_list ndet ) result
|
|
|> Matrix.sparse_of_vector_array
|
|
)
|
|
|
|
|
|
|
|
let make ?(n_states=1) det_space =
|
|
|
|
let m_H =
|
|
let mo_basis = Ds.mo_basis det_space in
|
|
let f =
|
|
match Ds.determinants det_space with
|
|
| Ds.Arbitrary _ -> create_matrix_arbitrary
|
|
| Ds.Spin _ -> create_matrix_spin
|
|
in
|
|
f (fun ki kj -> h_ij mo_basis ki kj) det_space
|
|
in
|
|
|
|
let m_S2 =
|
|
let f =
|
|
match Ds.determinants det_space with
|
|
| Ds.Arbitrary _ -> create_matrix_arbitrary
|
|
| Ds.Spin _ -> create_matrix_spin
|
|
in
|
|
f (fun ki kj -> CIMatrixElement.make_s2 ki kj) det_space
|
|
in
|
|
|
|
let eigensystem = lazy (
|
|
let m_H =
|
|
Lazy.force m_H
|
|
in
|
|
let diagonal =
|
|
Vec.init (Matrix.dim1 m_H) (fun i -> Matrix.get m_H i i)
|
|
in
|
|
let matrix_prod psi =
|
|
Matrix.mm ~transa:`T m_H psi
|
|
in
|
|
Davidson.make ~n_states diagonal matrix_prod
|
|
)
|
|
in
|
|
{ det_space ; m_H ; m_S2 ; eigensystem ; n_states }
|
|
|
|
|