10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2024-11-18 12:03:40 +01:00
QCaml/CI/CI.ml
2019-02-28 22:52:20 +01:00

217 lines
5.8 KiB
OCaml

open Lacaml.D
module Ds = Determinant_space
type t =
{
det_space : Ds.t ;
m_H : Matrix.t lazy_t ;
m_S2 : Matrix.t lazy_t ;
eigensystem : (Mat.t * Vec.t) lazy_t;
n_states : int;
}
let det_space t = t.det_space
let n_states t = t.n_states
let m_H t = Lazy.force t.m_H
let m_S2 t = Lazy.force t.m_S2
let eigensystem t = Lazy.force t.eigensystem
let eigenvectors t =
let (x,_) = eigensystem t in x
let eigenvalues t =
let (_,x) = eigensystem t in x
let h_integrals mo_basis =
let one_e_ints = MOBasis.one_e_ints mo_basis
and two_e_ints = MOBasis.two_e_ints mo_basis
in
( (fun i j _ -> one_e_ints.{i,j}),
(fun i j k l s s' ->
if s' = Spin.other s then
ERI.get_phys two_e_ints i j k l
else
(ERI.get_phys two_e_ints i j k l) -.
(ERI.get_phys two_e_ints i j l k)
) )
let h_ij mo_basis ki kj =
let integrals =
List.map (fun f -> f mo_basis)
[ h_integrals ]
in
CIMatrixElement.make integrals ki kj
|> List.hd
let create_matrix_arbitrary f det_space =
lazy (
let det =
match Ds.determinants det_space with
| Ds.Arbitrary a -> a
| _ -> assert false
in
let ndet = Ds.size det_space in
let v = Vec.make0 ndet in
Array.init ndet
(fun i -> let ki = det.(i) in
Printf.eprintf "%8d / %8d\r%!" i ndet;
let j = ref 1 in
Ds.determinant_stream det_space
|> Stream.iter (fun kj -> v.{!j} <- f ki kj ; incr j);
Vector.sparse_of_vec v)
|> Matrix.sparse_of_vector_array
)
(* Create a matrix using the fact that the determinant space is made of
the outer product of spindeterminants. *)
let create_matrix_spin f det_space =
lazy (
let ndet = Ds.size det_space in
let a, b =
match Ds.determinants det_space with
| Ds.Spin (a,b) -> (a,b)
| _ -> assert false
in
let n_alfa = Array.length a in
let n_beta = Array.length b in
let result = Array.init ndet (fun _ -> []) in
(** Update function when ki and kj are connected *)
let update i j ki kj =
let x = f ki kj in
if abs_float x > Constants.epsilon then
result.(i) <- (j, x) :: result.(i) ;
in
(** Array of (list of singles, list of doubles) in the beta spin *)
let degree_bb =
Array.map (fun det_i ->
let deg = Spindeterminant.degree det_i in
let doubles =
Array.mapi (fun i det_j ->
let d = deg det_j in
if d < 3 then
Some (i,d,det_j)
else
None
) b
|> Array.to_list
|> Util.list_some
in
let singles =
List.filter (fun (i,d,det_j) -> d < 2) doubles
|> List.map (fun (i,_,det_j) -> (i,det_j))
in
let doubles =
List.map (fun (i,_,det_j) -> (i,det_j)) doubles
in
(singles, doubles)
) b
in
let a = Array.to_list a
and b = Array.to_list b
in
let i = ref 0 in
List.iteri (fun ia i_alfa ->
Printf.eprintf "%8d / %8d\r%!" ia n_alfa;
let j = ref 1 in
let deg_a = Spindeterminant.degree i_alfa in
List.iter (fun j_alfa ->
let degree_a = deg_a j_alfa in
begin
match degree_a with
| 2 ->
let i' = ref !i in
List.iteri (fun ib i_beta ->
let ki = Determinant.of_spindeterminants i_alfa i_beta in
let kj = Determinant.of_spindeterminants j_alfa i_beta in
update !i' (ib + !j) ki kj;
incr i';
) b;
| 1 ->
let i' = ref !i in
List.iteri (fun ib i_beta ->
let ki = Determinant.of_spindeterminants i_alfa i_beta in
let singles, _ = degree_bb.(ib) in
List.iter (fun (j', j_beta) ->
let kj = Determinant.of_spindeterminants j_alfa j_beta in
update !i' (j' + !j) ki kj
) singles;
incr i';
) b;
| 0 ->
let i' = ref !i in
List.iteri (fun ib i_beta ->
let ki = Determinant.of_spindeterminants i_alfa i_beta in
let _singles, doubles = degree_bb.(ib) in
List.iter (fun (j', j_beta) ->
let kj = Determinant.of_spindeterminants j_alfa j_beta in
update !i' (j' + !j) ki kj
) doubles;
incr i';
) b;
| _ -> ();
end;
j := !j + n_beta
) a;
i := !i + n_beta
) a;
Array.map (fun l ->
List.rev l
|> Vector.sparse_of_assoc_list ndet ) result
|> Matrix.sparse_of_vector_array
)
let make ?(n_states=1) det_space =
let m_H =
let mo_basis = Ds.mo_basis det_space in
let f =
match Ds.determinants det_space with
| Ds.Arbitrary _ -> create_matrix_arbitrary
| Ds.Spin _ -> create_matrix_spin
in
f (fun ki kj -> h_ij mo_basis ki kj) det_space
in
let m_S2 =
let f =
match Ds.determinants det_space with
| Ds.Arbitrary _ -> create_matrix_arbitrary
| Ds.Spin _ -> create_matrix_spin
in
f (fun ki kj -> CIMatrixElement.make_s2 ki kj) det_space
in
let eigensystem = lazy (
let m_H =
Lazy.force m_H
in
let diagonal =
Vec.init (Matrix.dim1 m_H) (fun i -> Matrix.get m_H i i)
in
let matrix_prod psi =
Matrix.mm ~transa:`T m_H psi
in
Davidson.make ~n_states diagonal matrix_prod
)
in
{ det_space ; m_H ; m_S2 ; eigensystem ; n_states }