QCaml/SCF/RHF.ml

203 lines
4.5 KiB
OCaml

open Util
open Constants
open Lacaml.D
module Si = Simulation
module El = Electrons
module Ao = AOBasis
module Ov = Overlap
let make ?guess:(guess=`Huckel) ?max_scf:(max_scf=64) ?level_shift:(level_shift=0.1)
?threshold_SCF:(threshold_SCF=1.e-5) simulation =
(* Number of occupied MOs *)
let nocc =
El.n_alfa @@ Si.electrons simulation
in
let nuclear_repulsion =
Si.nuclear_repulsion simulation
in
let ao_basis =
Si.ao_basis simulation
in
(* Initial guess *)
let guess =
Guess.make ~nocc ~guess ao_basis
in
(* Orthogonalization matrix *)
let m_X =
Ao.ortho ao_basis
in
(* Overlap matrix *)
let m_S =
Ao.overlap ao_basis
|> Ov.matrix
in
let m_T = Ao.kin_ints ao_basis |> KinInt.matrix
and m_V = Ao.eN_ints ao_basis |> NucInt.matrix
in
(* Level shift in MO basis *)
let m_LSmo =
Array.init (Mat.dim2 m_X) (fun i ->
if i > nocc then level_shift else 0.)
|> Vec.of_array
|> Mat.of_diag
in
(* SCF iterations *)
let rec loop nSCF iterations energy_prev m_C m_P_prev fock_prev threshold diis =
(* Density matrix over nocc occupied MOs *)
let m_P =
gemm ~alpha:2. ~transb:`T ~k:nocc m_C m_C
in
(* Fock matrix in AO basis *)
let fock =
match fock_prev, threshold > 100. *. threshold_SCF with
| Some fock_prev, true ->
let threshold = 1.e-8 in
Fock.make_rhf ~density:(Mat.sub m_P m_P_prev) ~threshold ao_basis
|> Fock.add fock_prev
| _ -> Fock.make_rhf ~density:m_P ao_basis
in
let m_F, m_Hc, m_J, m_K =
let x = fock in
Fock.(fock x, core x, coulomb x, exchange x)
in
(* Add level shift in AO basis *)
let m_F =
let m_SC =
gemm m_S m_C
in
gemm m_SC (gemm m_LSmo m_SC ~transb:`T)
|> Mat.add m_F
in
(* Fock matrix in orthogonal basis *)
let m_F_ortho =
xt_o_x m_F m_X
in
let error_fock =
let fps =
gemm m_F (gemm m_P m_S)
and spf =
gemm m_S (gemm m_P m_F)
in
xt_o_x (Mat.sub fps spf) m_X
in
let diis =
DIIS.append ~p:(Mat.as_vec m_F_ortho) ~e:(Mat.as_vec error_fock) diis
in
let m_F_diis =
let x =
Bigarray.genarray_of_array1 (DIIS.next diis)
in
Bigarray.reshape_2 x (Mat.dim1 m_F_ortho) (Mat.dim2 m_F_ortho)
in
(* MOs in orthogonal MO basis *)
let m_C', eigenvalues =
diagonalize_symm m_F_diis
in
(* MOs in AO basis *)
let m_C =
gemm m_X m_C'
in
(* Hartree-Fock energy *)
let energy =
nuclear_repulsion +. 0.5 *.
Mat.gemm_trace m_P (Mat.add m_Hc m_F)
in
(* Convergence criterion *)
let error =
error_fock
|> Mat.as_vec
|> amax
|> abs_float
in
let converged =
nSCF = max_scf || error < threshold_SCF
in
let gap =
if nocc < Vec.dim eigenvalues then
eigenvalues.{nocc+1} -. eigenvalues.{nocc}
else 0.
in
let () =
match energy_prev with
| Some energy_prev ->
Printf.eprintf "%3d %16.10f %16.10f %11.4e %10.4f\n%!" nSCF energy (energy -. energy_prev) error gap
| None ->
Printf.eprintf "%3d %16.10f %16s %11.4e %10.4f\n%!" nSCF energy "" error gap
in
if not converged then
loop (nSCF+1) ( (energy, error, gap) :: iterations) (Some energy) m_C m_P (Some fock) error diis
else
let iterations =
List.rev ( (energy, error, gap) :: iterations )
|> Array.of_list
in
HartreeFock_type.(RHF
{
simulation;
nocc;
guess ;
eigenvectors = m_C ;
eigenvalues ;
energy ;
nuclear_repulsion;
iterations ;
kin_energy = Mat.gemm_trace m_P m_T;
eN_energy = Mat.gemm_trace m_P m_V;
coulomb_energy = 0.5 *. Mat.gemm_trace m_P m_J;
exchange_energy = 0.5 *. Mat.gemm_trace m_P m_K;
occupation = Mat.copy_diag m_P;
})
in
(* Guess coefficients *)
let m_H =
match guess with
| Guess.Hcore m_H -> m_H
| Guess.Huckel m_H -> m_H
in
let m_Hmo =
xt_o_x m_H m_X
in
let m_C', _ =
diagonalize_symm m_Hmo
in
let m_C =
gemm m_X m_C'
in
let diis = DIIS.make () in
loop 1 [] None m_C m_C None threshold_SCF diis