10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2024-11-07 14:43:41 +01:00
QCaml/Basis/TwoElectronRR.ml
2018-02-21 20:21:45 +01:00

454 lines
15 KiB
OCaml

open Util
open Constants
open Powers
open Coordinate
let debug=false
let cutoff2 = cutoff *. cutoff
exception NullQuartet
(** Horizontal and Vertical Recurrence Relations (HVRR) *)
let rec hvrr_two_e (angMom_a, angMom_b, angMom_c, angMom_d)
zero_m_array
(expo_b, expo_d)
(expo_inv_p, expo_inv_q)
(center_ab, center_cd, center_pq)
(center_pa, center_qc)
map_1d map_2d
=
(* Swap electrons 1 and 2 so that the max angular momentum is on 1 *)
(*
if angMom_a.tot + angMom_b.tot < angMom_c.tot + angMom_d.tot then
hvrr_two_e (angMom_c, angMom_d, angMom_a, angMom_b)
zero_m_array
(expo_d, expo_b)
(expo_inv_q, expo_inv_p)
(center_cd, center_ab, (Coordinate.neg center_pq) )
(center_qc, center_pa)
map_1d map_2d
else
*)
let maxm = angMom_a.tot + angMom_b.tot + angMom_c.tot + angMom_d.tot in
let maxsze = maxm+1 in
let get_xyz angMom =
match angMom with
| { y=0 ; z=0 ; _ } -> X
| { z=0 ; _ } -> Y
| _ -> Z
in
(** Vertical recurrence relations *)
let rec vrr0 angMom_a =
match angMom_a.tot with
| 0 -> zero_m_array
| _ ->
let key = Zkey.of_powers (Zkey.Three angMom_a) in
try Zmap.find map_1d key with
| Not_found ->
let result =
let xyz = get_xyz angMom_a in
let am = Powers.decr xyz angMom_a in
let amxyz = Powers.get xyz am in
let f1 = expo_inv_p *. (Coordinate.get xyz center_pq)
and f2 = expo_b *. expo_inv_p *. (Coordinate.get xyz center_ab)
in
let result = Array.create_float maxsze in
if amxyz = 0 then
begin
let v1 =
vrr0 am
in
for m=0 to maxm-1 do
result.(m) <- f1 *. v1.(m+1) -. f2 *. v1.(m)
done;
result.(maxm) <- -. f2 *. v1.(maxm)
end
else
begin
let amm = Powers.decr xyz am in
let v3 = vrr0 amm in
let v1 = vrr0 am in
let f3 = (float_of_int amxyz) *. expo_inv_p *. 0.5 in
for m=0 to maxm-1 do
result.(m) <- f1 *. v1.(m+1) -. f2 *. v1.(m)
+. f3 *. (v3.(m) +. expo_inv_p *. v3.(m+1))
done;
result.(maxm) <- f3 *. v3.(maxm)
end;
result
in Zmap.add map_1d key result;
result
and vrr angMom_a angMom_c =
match (angMom_a.tot, angMom_c.tot) with
| (i,0) -> if (i>0) then vrr0 angMom_a
else zero_m_array
| (_,_) ->
let key = Zkey.of_powers (Zkey.Six (angMom_a, angMom_c)) in
try Zmap.find map_2d key with
| Not_found ->
let result =
(* angMom_c.tot > 0 so cm.tot >= 0 *)
let xyz = get_xyz angMom_c in
let cm = Powers.decr xyz angMom_c in
let cmxyz = Powers.get xyz cm in
let axyz = Powers.get xyz angMom_a in
let f1 =
-. expo_d *. expo_inv_q *. (Coordinate.get xyz center_cd)
and f2 =
expo_inv_q *. (Coordinate.get xyz center_pq)
in
let result = Array.make maxsze 0. in
if ( (abs_float f1 > cutoff) || (abs_float f2 > cutoff) ) then
begin
let v1 =
vrr angMom_a cm
in
for m=0 to maxm-1 do
result.(m) <- f1 *. v1.(m) -. f2 *. v1.(m+1) ;
done;
result.(maxm) <- f1 *. v1.(maxm) ;
end;
if cmxyz > 0 then
begin
let f3 =
(float_of_int cmxyz) *. expo_inv_q *. 0.5
in
if (abs_float f3 > cutoff) ||
(abs_float (f3 *. expo_inv_q) > cutoff) then
begin
let v3 =
let cmm = Powers.decr xyz cm in
vrr angMom_a cmm
in
for m=0 to maxm-1 do
result.(m) <- result.(m) +.
f3 *. (v3.(m) +. expo_inv_q *. v3.(m+1))
done;
result.(maxm) <- result.(maxm) +. f3 *. v3.(maxm)
end
end;
if axyz > 0 then
begin
let am = Powers.decr xyz angMom_a in
let f5 =
(float_of_int axyz) *. expo_inv_p *. expo_inv_q *. 0.5
in
if (abs_float f5 > cutoff) then
let v5 =
vrr am cm
in
for m=0 to maxm-1 do
result.(m) <- result.(m) -. f5 *. v5.(m+1)
done
end;
result
in Zmap.add map_2d key result;
result
(*
and trr angMom_a angMom_c =
match (angMom_a.tot, angMom_c.tot) with
| (i,0) -> if (i>0) then (vrr0 angMom_a).(0)
else zero_m_array.(0)
| (_,_) ->
(*
let key = Zkey.of_powers (Zkey.Six (angMom_a, angMom_c)) in
try Zmap.find map_2d key with
| Not_found ->
*)
let result =
let xyz = get_xyz angMom_c in
let axyz = Powers.get xyz angMom_a in
let cm = Powers.decr xyz angMom_c in
let cmxyz = Powers.get xyz cm in
let expo_inv_q_over_p = expo_inv_q /. expo_inv_p in
let f =
Coordinate.get xyz center_qc +. expo_inv_q_over_p *.
(Coordinate.get xyz center_pa)
in
let result =
if abs_float f < cutoff then 0. else
let v1 = trr angMom_a cm in
f *. v1
in
let result =
if axyz < 1 then result else
let f = 0.5 *. (float_of_int axyz) *. expo_inv_q in
if abs_float f < cutoff then result else
let am = Powers.decr xyz angMom_a in
let v2 = trr am cm in
result +. f *. v2
in
let result =
if cmxyz < 1 then result else
let f = 0.5 *. (float_of_int cmxyz) *. expo_inv_q in
if abs_float f < cutoff then 0. else
let cmm = Powers.decr xyz cm in
let v3 = trr angMom_a cmm in
result +. f *. v3
in
let result =
if cmxyz < 0 then result else
let f = -. expo_inv_q_over_p in
let ap = Powers.incr xyz angMom_a in
let v4 = trr ap cm in
result +. v4 *. f
in
result
in
(*
Zmap.add map_2d key result;
*)
result
*)
(** Horizontal recurrence relations *)
and hrr0 angMom_a angMom_b angMom_c =
match angMom_b.tot with
| 1 ->
let xyz = get_xyz angMom_b in
let ap = Powers.incr xyz angMom_a in
let v1 = vrr ap angMom_c in
let f2 = Coordinate.get xyz center_ab in
if (abs_float f2 < cutoff) then v1.(0) else
let v2 = vrr angMom_a angMom_c in
v1.(0) +. f2 *. v2.(0)
| 0 -> (vrr angMom_a angMom_c).(0)
(*
| 0 -> trr angMom_a angMom_c
*)
| _ ->
let xyz = get_xyz angMom_b in
let bxyz = Powers.get xyz angMom_b in
if bxyz > 0 then
let ap = Powers.incr xyz angMom_a in
let bm = Powers.decr xyz angMom_b in
let h1 = hrr0 ap bm angMom_c in
let f2 = Coordinate.get xyz center_ab in
if abs_float f2 < cutoff then h1 else
let h2 = hrr0 angMom_a bm angMom_c in
h1 +. f2 *. h2
else 0.
and hrr angMom_a angMom_b angMom_c angMom_d =
match (angMom_b.tot, angMom_d.tot) with
| (_,0) ->
if (angMom_b.tot = 0) then
(vrr angMom_a angMom_c).(0)
(*
trr angMom_a angMom_c
*)
else
hrr0 angMom_a angMom_b angMom_c
| (_,_) ->
let xyz = get_xyz angMom_d in
let cp = Powers.incr xyz angMom_c in
let dm = Powers.decr xyz angMom_d in
let h1 = hrr angMom_a angMom_b cp dm in
let f2 = Coordinate.get xyz center_cd in
if abs_float f2 < cutoff then h1 else
let h2 = hrr angMom_a angMom_b angMom_c dm in
h1 +. f2 *. h2
in
hrr angMom_a angMom_b angMom_c angMom_d
let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q : float Zmap.t =
let shell_a = shell_p.ContractedShellPair.shell_a
and shell_b = shell_p.ContractedShellPair.shell_b
and shell_c = shell_q.ContractedShellPair.shell_a
and shell_d = shell_q.ContractedShellPair.shell_b
and sp = shell_p.ContractedShellPair.shell_pairs
and sq = shell_q.ContractedShellPair.shell_pairs
in
let maxm =
shell_p.ContractedShellPair.totAngMomInt +
shell_q.ContractedShellPair.totAngMomInt
in
(* Pre-computation of integral class indices *)
let class_indices =
Angular_momentum.zkey_array
(Angular_momentum.Quartet
Contracted_shell.(totAngMom shell_a, totAngMom shell_b,
totAngMom shell_c, totAngMom shell_d))
in
let contracted_class =
Array.make (Array.length class_indices) 0.;
in
let monocentric =
shell_p.ContractedShellPair.monocentric &&
shell_q.ContractedShellPair.monocentric &&
Contracted_shell.center shell_p.ContractedShellPair.shell_a =
Contracted_shell.center shell_q.ContractedShellPair.shell_a
in
(* Compute all integrals in the shell for each pair of significant shell pairs *)
let norm_coef_scale_p = shell_p.ContractedShellPair.norm_coef_scale in
let norm_coef_scale_q = shell_q.ContractedShellPair.norm_coef_scale in
for ab=0 to (Array.length sp - 1) do
let cab = shell_p.ContractedShellPair.coef.(ab) in
let b = sp.(ab).ShellPair.j in
for cd=0 to (Array.length shell_q.ContractedShellPair.shell_pairs - 1) do
let coef_prod =
cab *. shell_q.ContractedShellPair.coef.(cd)
in
(** Screening on the product of coefficients *)
try
if (abs_float coef_prod) < 1.e-3*.cutoff then
raise NullQuartet;
let center_pq =
sp.(ab).ShellPair.center |- sq.(cd).ShellPair.center
in
let norm_pq_sq =
Coordinate.dot center_pq center_pq
in
let expo_pq_inv =
shell_p.ContractedShellPair.expo_inv.(ab) +.
shell_q.ContractedShellPair.expo_inv.(cd)
in
let zero_m_array =
zero_m ~maxm ~expo_pq_inv ~norm_pq_sq
in
begin
match Contracted_shell.(totAngMom shell_a, totAngMom shell_b,
totAngMom shell_c, totAngMom shell_d) with
| Angular_momentum.(S,S,S,S) ->
let integral =
zero_m_array.(0)
in
contracted_class.(0) <- contracted_class.(0) +. coef_prod *. integral
| _ ->
let d = shell_q.ContractedShellPair.shell_pairs.(cd).ShellPair.j in
let map_1d = Zmap.create (4*maxm) in
let map_2d = Zmap.create (Array.length class_indices) in
let norm_coef_scale =
Array.to_list norm_coef_scale_p
|> List.map (fun v1 ->
Array.map (fun v2 -> v1 *. v2) norm_coef_scale_q)
|> Array.concat
in
(* Compute the integral class from the primitive shell quartet *)
class_indices
|> Array.iteri (fun i key ->
let (angMom_a,angMom_b,angMom_c,angMom_d) =
match Zkey.to_powers ~kind:Zkey.Kind_12 key with
| Zkey.Twelve x -> x
| _ -> assert false
in
try
if monocentric then
begin
if ( ((1 land angMom_a.x+angMom_b.x+angMom_c.x+angMom_d.x)=1) ||
((1 land angMom_a.y+angMom_b.y+angMom_c.y+angMom_d.y)=1) ||
((1 land angMom_a.z+angMom_b.z+angMom_c.z+angMom_d.z)=1)
) then
raise NullQuartet
end;
(*
(* Schwartz screening *)
if (maxm > 2) then
(
let schwartz_p =
let key = Zkey.of_int_tuple (Zkey.Twelve
(angMomA, angMomB, angMomA, angMomB) )
in
match schwartz_p with
| None -> 1.
| Some schwartz_p -> Zmap.find schwartz_p key
in
if schwartz_p < cutoff then raise NullQuartet;
let schwartz_q =
let key = Zkey.of_int_tuple (Zkey.Twelve
(angMomC, angMomD, angMomC, angMomD) )
in
match schwartz_q with
| None -> 1.
| Some schwartz_q -> Zmap.find schwartz_q key
in
if schwartz_p *. schwartz_q < cutoff2 then raise NullQuartet;
);
*)
let norm = norm_coef_scale.(i) in
let coef_prod = coef_prod *. norm in
let integral =
hvrr_two_e (angMom_a, angMom_b, angMom_c, angMom_d)
zero_m_array
(Contracted_shell.expo shell_b b, Contracted_shell.expo shell_d d)
(shell_p.ContractedShellPair.expo_inv.(ab),
shell_q.ContractedShellPair.expo_inv.(cd) )
(sp.(ab).ShellPair.center_ab, sq.(cd).ShellPair.center_ab, center_pq)
(sp.(ab).ShellPair.center_a , sq.(cd).ShellPair.center_a)
map_1d map_2d
in
contracted_class.(i) <- contracted_class.(i) +. coef_prod *. integral
with NullQuartet -> ()
)
end
with NullQuartet -> ()
done
done;
let result =
Zmap.create (Array.length contracted_class)
in
Array.iteri (fun i key -> Zmap.add result key contracted_class.(i)) class_indices;
result
(** Computes all the two-electron integrals of the contracted shell quartet *)
let contracted_class ~zero_m shell_a shell_b shell_c shell_d : float Zmap.t =
let shell_p = ContractedShellPair.create ~cutoff shell_a shell_b
and shell_q = ContractedShellPair.create ~cutoff shell_c shell_d
in
contracted_class_shell_pairs ~zero_m shell_p shell_q