10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2024-11-06 22:23:42 +01:00
QCaml/Basis/OneElectronRR.ml

222 lines
6.4 KiB
OCaml

open Util
open Constants
open Powers
open Coordinate
exception NullPair
(** In chop f g, evaluate g only if f is non zero, and return f *. (g ()) *)
let chop f g =
if (abs_float f) < cutoff then 0.
else f *. (g ())
(** Horizontal and Vertical Recurrence Relations (HVRR) *)
let hvrr_one_e (angMom_a, angMom_b)
zero_m_array (expo_b) (expo_inv_p) (center_ab, center_pa, center_pc)
map
=
let maxm = angMom_a.tot + angMom_b.tot in
let maxsze = maxm+1 in
let empty = Array.make maxsze 0. in
let get_xyz angMom =
match angMom with
| { y=0 ; z=0 ; _ } -> X
| { z=0 ; _ } -> Y
| _ -> Z
in
(** Vertical recurrence relations *)
let rec vrr angMom_a =
let { x=ax ; y=ay ; z=az } = angMom_a in
if ax < 0 || ay < 0 || az < 0 then raise Exit
else
match angMom_a.tot with
| 0 -> zero_m_array
| _ ->
let key = Zkey.of_powers (Zkey.Three angMom_a) in
try Zmap.find map key with
| Not_found ->
let result =
let xyz = get_xyz angMom_a in
let am = Powers.decr xyz angMom_a in
let amxyz = Powers.get xyz am in
if amxyz < 0 then empty else
let f1 = Coordinate.get xyz center_pa
and f2 = expo_inv_p *. (Coordinate.get xyz center_pc)
in
if amxyz < 1 then
let v1 =
vrr am
in
Array.init maxsze (fun m ->
if m = maxm then (f1 *. v1.(m) ) else
(f1 *. v1.(m) ) -. f2 *. v1.(m+1) )
else
let v3 =
let amm = Powers.decr xyz am in
vrr amm
in
let v1 =
vrr am
in
let f3 = (float_of_int amxyz) *. expo_inv_p *. 0.5 in
Array.init maxsze (fun m -> f1 *. v1.(m) -.
(if m = maxm then 0. else
f2 *. v1.(m+1) )
+. f3 *. (v3.(m) -. if m = maxm then 0. else
expo_inv_p *. v3.(m+1))
)
in Zmap.add map key result;
result
(** Horizontal recurrence relations *)
and hrr angMom_a angMom_b =
let { x=bx ; y=by ; z=bz } = angMom_b in
if bx < 0 || by < 0 || bz < 0 then raise Exit
else
match angMom_b.tot with
| 0 -> (vrr angMom_a).(0)
| _ ->
let xyz = get_xyz angMom_b in
let bxyz = Powers.get xyz angMom_b in
if (bxyz < 1) then 0. else
let ap = Powers.incr xyz angMom_a in
let bm = Powers.decr xyz angMom_b in
let h1 =
hrr ap bm
in
let f2 =
Coordinate.get xyz center_ab
in
if abs_float f2 < cutoff then h1 else
let h2 =
hrr angMom_a bm
in
h1 +. f2 *. h2
in
hrr angMom_a angMom_b
(** Computes all the one-electron integrals of the contracted shell pair *)
let contracted_class_shell_pair ~zero_m shell_p geometry : float Zmap.t =
let shell_a = shell_p.ContractedShellPair.shell_a
and shell_b = shell_p.ContractedShellPair.shell_b
in
let maxm =
let open Angular_momentum in
(to_int @@ Contracted_shell.totAngMom shell_a) + (to_int @@ Contracted_shell.totAngMom shell_b)
in
(* Pre-computation of integral class indices *)
let class_indices =
Angular_momentum.zkey_array
(Angular_momentum.Doublet
Contracted_shell.(totAngMom shell_a, totAngMom shell_b))
in
let contracted_class =
Array.make (Array.length class_indices) 0.;
in
(* Compute all integrals in the shell for each pair of significant shell pairs *)
let norm_coef_scale_p = shell_p.ContractedShellPair.norm_coef_scale
in
for ab=0 to (Array.length shell_p.ContractedShellPair.shell_pairs - 1)
do
let b = shell_p.ContractedShellPair.shell_pairs.(ab).ShellPair.j in
try
begin
let coef_prod = shell_p.ContractedShellPair.coef.(ab) in
(** Screening on the product of coefficients *)
if (abs_float coef_prod) < 1.e-4*.cutoff then
raise NullPair;
let expo_pq_inv =
shell_p.ContractedShellPair.expo_inv.(ab)
in
let center_ab =
shell_p.ContractedShellPair.center_ab
in
let center_p =
shell_p.ContractedShellPair.shell_pairs.(ab).ShellPair.center
in
let center_pa =
Coordinate.(center_p |- Contracted_shell.center shell_a)
in
for c=0 to Array.length geometry - 1 do
let element, nucl_coord = geometry.(c) in
let charge = Element.to_charge element |> Charge.to_float in
let center_pc =
Coordinate.(center_p |- nucl_coord )
in
let norm_pq_sq =
Coordinate.dot center_pc center_pc
in
let zero_m_array =
zero_m ~maxm ~expo_pq_inv ~norm_pq_sq
in
match Contracted_shell.(totAngMom shell_a, totAngMom shell_b) with
| Angular_momentum.(S,S) ->
let integral =
zero_m_array.(0)
in
contracted_class.(0) <- contracted_class.(0) -. coef_prod *. integral *. charge
| _ ->
let map = Zmap.create (2*maxm) in
let norm_coef_scale = norm_coef_scale_p in
(* Compute the integral class from the primitive shell quartet *)
class_indices
|> Array.iteri (fun i key ->
let (angMomA,angMomB) =
match Zkey.to_powers ~kind:Zkey.Kind_6 key with
| Zkey.Six x -> x
| _ -> assert false
in
let norm = norm_coef_scale.(i) in
let coef_prod = coef_prod *. norm in
let integral =
hvrr_one_e (angMomA, angMomB)
zero_m_array
(Contracted_shell.expo shell_b b)
(shell_p.ContractedShellPair.expo_inv.(ab))
(center_ab, center_pa, center_pc)
map
in
contracted_class.(i) <- contracted_class.(i) -. coef_prod *. integral *. charge
)
done
end
with NullPair -> ()
done;
let result =
Zmap.create (Array.length contracted_class)
in
Array.iteri (fun i key -> Zmap.add result key contracted_class.(i)) class_indices;
result