10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2024-11-14 10:03:39 +01:00
QCaml/Basis/ContractedShell.ml
2018-02-25 01:40:12 +01:00

128 lines
4.3 KiB
OCaml

open Util
open Constants
open Coordinate
type t = {
expo : float array; (* Gaussian exponents *)
coef : float array; (* Contraction coefficients *)
center : Coordinate.t; (* Center of all the Gaussians *)
totAngMom : AngularMomentum.t; (* Total angular momentum *)
size : int; (* Number of contracted Gaussians *)
norm_coef : float array; (* Normalization coefficient of the class
corresponding to the i-th contraction *)
norm_coef_scale : float array; (* Inside a class, the norm is the norm
of the function with (totAngMom,0,0) *.
this scaling factor *)
index : int; (* Index in the array of contracted shells *)
powers : Zkey.t array; (* Array of Zkeys corresponding to the
powers of (x,y,z) in the class *)
}
module Am = AngularMomentum
(** Normalization coefficient of contracted function i, which depends on the
exponent and the angular momentum. Two conventions can be chosen : a single
normalisation factor for all functions of the class, or a coefficient which
depends on the powers of x,y and z.
Returns, for each contracted function, an array of functions taking as
argument the [|x;y;z|] powers.
*)
let compute_norm_coef expo totAngMom =
let atot =
Am.to_int totAngMom
in
let factor int_array =
let dfa = Array.map (fun j ->
( float_of_int (1 lsl j) *. fact j) /. fact (j+j)
) int_array
in
sqrt (dfa.(0) *.dfa.(1) *. dfa.(2))
in
let expo =
if atot mod 2 = 0 then
Array.map (fun alpha ->
let alpha_2 = alpha +. alpha in
(alpha_2 *. pi_inv)**(0.75) *. (pow (alpha_2 +. alpha_2) (atot/2))
) expo
else
Array.map (fun alpha ->
let alpha_2 = alpha +. alpha in
(alpha_2 *. pi_inv)**(0.75) *. sqrt (pow (alpha_2 +. alpha_2) atot)
) expo
in
Array.map (fun x -> let f a = x *. (factor a) in f) expo
let make ~index ~expo ~coef ~center ~totAngMom =
assert (Array.length expo = Array.length coef);
assert (Array.length expo > 0);
let norm_coef_func =
compute_norm_coef expo totAngMom
in
let powers =
Am.zkey_array (Am.Singlet totAngMom)
in
let norm_coef =
Array.map (fun f -> f [| Am.to_int totAngMom ; 0 ; 0 |]) norm_coef_func
in
let norm_coef_scale =
Array.map (fun a ->
(norm_coef_func.(0) (Zkey.to_int_array a)) /. norm_coef.(0)
) powers
in
{ index ; expo ; coef ; center ; totAngMom ; size=Array.length expo ; norm_coef ;
norm_coef_scale ; powers }
let with_index a i =
{ a with index = i }
let to_string s =
let coord = s.center in
let open Printf in
(match s.totAngMom with
| Am.S -> sprintf "%3d " (s.index+1)
| _ -> sprintf "%3d-%-3d" (s.index+1) (s.index+(Array.length s.powers))
) ^
( sprintf "%1s %8.3f %8.3f %8.3f " (Am.to_string s.totAngMom)
(get X coord) (get Y coord) (get Z coord) ) ^
(Array.map2 (fun e c -> sprintf "%16.8e %16.8e" e c) s.expo s.coef
|> Array.to_list |> String.concat (sprintf "\n%36s" " ") )
(** Normalization coefficient of contracted function i, which depends on the
exponent and the angular momentum. Two conventions can be chosen : a single
normalisation factor for all functions of the class, or a coefficient which
depends on the powers of x,y and z.
Returns, for each contracted function, an array of functions taking as
argument the [|x;y;z|] powers.
*)
let compute_norm_coef expo totAngMom =
let atot =
Am.to_int totAngMom
in
let factor int_array =
let dfa = Array.map (fun j ->
(float_of_int (1 lsl j) *. fact j) /. fact (j+j)
) int_array
in
sqrt (dfa.(0) *.dfa.(1) *. dfa.(2))
in
let expo =
if atot mod 2 = 0 then
Array.map (fun alpha ->
let alpha_2 = alpha +. alpha in
(alpha_2 *. pi_inv)**(0.75) *. (pow (alpha_2 +. alpha_2) (atot/2))
) expo
else
Array.map (fun alpha ->
let alpha_2 = alpha +. alpha in
(alpha_2 *. pi_inv)**(0.75) *. sqrt (pow (alpha_2 +. alpha_2) atot)
) expo
in
Array.map (fun x -> let f a = x *. factor a in f) expo