mirror of
https://gitlab.com/scemama/QCaml.git
synced 2024-11-09 07:33:40 +01:00
1377 lines
53 KiB
OCaml
1377 lines
53 KiB
OCaml
(* Algorithme de localisation des orbitales *)
|
||
|
||
(* SOMMAIRE *)
|
||
|
||
(* 0. Paramètres du calcul *)
|
||
|
||
(* I. Définition des types *)
|
||
|
||
(* II : Définition des fonctions pour la localisation *)
|
||
|
||
(* 1. Définitions de base nécessaire pour la suite *)
|
||
(* 2. Fonction de calcul de la matrice des angles selon la méthode de Edminston *)
|
||
(* 3. Fonction calcul de la matrice des angles selon la méthode de Boys façon Edminston = NON FONCTIONNELLE *)
|
||
(* 4. Fonction de calcul de la matrice des angles selon la méthode de Boys *)
|
||
(* 5. Pattern matching : calcul de alpha et du critere D *)
|
||
(* 6. Norme d'une matrice *)
|
||
(* 7. Détermination de alpha_max et ses indices i et j.
|
||
Si alpha max > pi/2 on soustrait pi/2 à la matrice des alphas de manière récursive
|
||
Si alpha max < pi/2 on ajoute pi/2 à la matrice des alphas de manière récursive *)
|
||
(* 8. Matrice de rotation 2 par 2 *)
|
||
(* 9. Matrice de rotation n par n avec un angle fixe *)
|
||
(* 10. Fonction d'extraction des 2 vecteurs propres i et j de la matrice des OMs pour les mettres dans la matrice Ksi (n par 2)
|
||
pour appliquer R afin d'effectuer la rotation des orbitales *) (* {1,2} -> 1ere ligne, 2e colonne *)
|
||
(* 11. Fonction de calcul de ksi~ (matrice n par 2), nouvelle matrice par application de la matrice de rotation dans laquelle
|
||
on obtient les deux orbitales que l'on va réinjecter dans la matrice Phi*)
|
||
(* 12. Fonction pour la création de matrice intermédiaire pour supprimer i j et ajouter i~ et j~ *)
|
||
(* 13. Matrice intérmédiaire où les orbitales i et j ont été supprimées et remplacées par des 0, par soustraction de la matrice Phi
|
||
par la matrice *)
|
||
|
||
(* III. Localisation des OMs *)
|
||
|
||
(* 1. Boucle de calcul de la nouvelle matrice des coefficient après n rotation d'orbitales *)
|
||
(* 2. Fonction de localisation *)
|
||
|
||
(* IV : Fonctions pour la séparation et le rassemblement des matrices *)
|
||
|
||
(* 1. Fonction de création d'une liste d'entier à partir d'un vecteur de float*)
|
||
(* 2. Fonction créant une liste à partir des éléments manquant d'une autre liste, dans l'intervalle [1 ; n_mo] *)
|
||
(* 3. Fonction de séparation d'une matrice en 2 sous matrice, la première matrice correspondant aux colonnes de la matrice dont le numéro est présent
|
||
dans la liste et la seconde à celles dont le numéro de colonne n'est pas présent dans la liste *)
|
||
(* 4. Liste des OMs occupées *)
|
||
(* 5. Liste des OMs de coeur *)
|
||
(* 6. Fonction de creation d'une liste des OMs pi virtuelles *)
|
||
(* 7. Fonction de rassemblement de 2 matrices *)
|
||
|
||
(* V. Calcul *)
|
||
|
||
(* 1. Séparation des OMs -> m_occ : OMs occupées; m_vir : OMs vacantes *)
|
||
(* 1.1 Liste des OMs pi virtuelles *)
|
||
(* 2. Application d'une légère rotation d'un angle fixé aux OMs pour améliorer la convergence *)
|
||
(* 3. Légende *)
|
||
(* 4. Rotation des orbitales : localise localisation new_X / "methode" / epsilon = 1. si <1 diminue l'angle des rotations / nb itération / critère de convergence *)
|
||
(* 4.1 Fonction de localisation de toutes les orbitales virtuelles sans separation *)
|
||
(* 4.2 Fonction de localisation en separant les orbitales pi et sigma *)
|
||
(* 4.3 Fonction de localisation en separant les orbitales pi et sigma et les 10 dernières sigma *)
|
||
(* 4.4 Fonction séparant les orbitales pi, la premiere et la seconde moitié des orbitales sigma *)
|
||
(* 5. Rassemblement des occupées et des virtuelles *)
|
||
(* 5.1 Rassemblement des orbitales occupées (coeur et non coeur) *)
|
||
(* 5.2 Pattern matching du type de separation des orbitales virtuelles et rassemblement des orbitales occupées et virtuelles *)
|
||
|
||
(* VI. Analyse *)
|
||
|
||
(* 1. Fonction de calcul de l'extension spatiale des orbitales *)
|
||
(* 2. Fonction de tri par ordre croissant d'une liste *)
|
||
(* 3. Fonction de tri par ordre croissant de l'extension spatiale des orbitales *)
|
||
(* 4. Moyenne/variance/ecart-type/mediane de l'extension spatiale des orbitales *)
|
||
(* 5. Fonction d'affichage *)
|
||
|
||
let methode = "Boys_er";; (* Method for th orbitals localization *)
|
||
let iteration = 10000;; (* Maximum number of iteration for each localization *)
|
||
let cc = 10e-6;; (* Convergence criterion *)
|
||
let pre_angle = 0.001;; (* Rotation of the matrix with a small angle to improve the convergence *)
|
||
let epsilon = 1.;; (* Rotation angle = angle /. epsilon, default value : epsilon = 1. *)
|
||
|
||
let x_end = 1;; (* Choice of the x_end for the pi/sigma/end separation, size of the second matrix with the sigma orbitals *)
|
||
(* !!! WARNING : even if you don't use this localization method, 0 < x_end < total number of sigma orbitals.
|
||
If you don't use this method, use the default value, x_end = 1 WARNING !!! *)
|
||
|
||
(* Choice of the separation type of orbitals *)
|
||
|
||
(* For valence ones *)
|
||
let type_separation_occu = "pi/sigma";; (* Separation of the pi and sigma orbitals *)
|
||
(*let type_separation_occu = "1/2";;*) (* Separation of the first and second half of the orbitals *)
|
||
(*let type_separation_occu = "pi/sigma/end";;*) (* Separation pi,(n-x_end) sigma and x_end sigma *)
|
||
(*let type_separation_occu = "pi/1/2";;*) (* Separation pi, (n/2) first sigma and (n/2) last sigma *)
|
||
(*let type_separation_occu = "full";;*) (* Without separation *)
|
||
|
||
(* For occupied ones *)
|
||
let type_separation_vir = "pi/sigma";; (* Separation of the pi and sigma orbitals *)
|
||
(*let type_separation_vir = "1/2";;*) (* Separation of the first and second half of the orbitals *)
|
||
(*let type_separation_vir = "pi/sigma/end";;*) (* Separation pi,(n-x_end) sigma and x_end sigma *)
|
||
(*let type_separation_vir = "pi/1/2";;*) (* Separation pi, (n/2) first sigma and (n/2) last sigma *)
|
||
(*let type_separation_vir = "full";;*) (* Without separation *)
|
||
|
||
open Lacaml.D
|
||
|
||
(* I. Types definitions *)
|
||
|
||
type alphaij = {
|
||
alpha_max : float;
|
||
indice_ii : int;
|
||
indice_jj : int;
|
||
}
|
||
|
||
type alphad = {
|
||
m_alpha : Mat.t;
|
||
d : float;
|
||
}
|
||
|
||
let localize mo_basis =
|
||
|
||
let simulation = MOBasis.simulation mo_basis in
|
||
let nocc =
|
||
let elec = Simulation.electrons simulation
|
||
in
|
||
Electrons.n_alfa elec
|
||
in
|
||
let ao_basis = MOBasis.ao_basis mo_basis in
|
||
let n_core =
|
||
(Nuclei.small_core @@ Simulation.nuclei @@ MOBasis.simulation mo_basis) / 2
|
||
in
|
||
let charge = Simulation.charge simulation
|
||
|>Charge.to_int
|
||
in
|
||
|
||
(* II : Definition of the fonctions for the localization *)
|
||
|
||
(* 1. Basic definitions *)
|
||
let m_C = MOBasis.mo_coef mo_basis in
|
||
let n_ao = Mat.dim1 m_C in
|
||
let pi = acos(-1.) in
|
||
|
||
(* 2. Function for Edminston-Ruedenberg localization*)
|
||
(* Coefficient matrix n_ao x n_mo -> n_mo x n_mo matrix with angle(rad) between orbitals, Edminston localization criterion *)
|
||
(* matrix -> matrix, float *)
|
||
let f_alpha_er m_C =
|
||
|
||
let ee_ints = AOBasis.ee_ints ao_basis in
|
||
let n_mo = Mat.dim2 m_C in
|
||
|
||
let m_b12 = Mat.init_cols n_mo n_mo (fun i j -> 0.) in
|
||
let m_a12 = Mat.init_cols n_mo n_mo (fun i j -> 0.) in
|
||
let v_d = Vec.init n_mo (fun i -> 0.) in
|
||
|
||
(* Tableaux temporaires *)
|
||
let m_pqr =
|
||
Bigarray.(Array3.create Float64 fortran_layout n_ao n_ao n_ao)
|
||
in
|
||
let m_qr_i = Mat.create (n_ao*n_ao) n_mo in
|
||
let m_ri_j = Mat.create (n_ao*n_mo) n_mo in
|
||
let m_ij_k = Mat.create (n_mo*n_mo) n_mo in
|
||
|
||
Array.iter (fun s ->
|
||
(* Grosse boucle externe sur s *)
|
||
Array.iter (fun r ->
|
||
Array.iter (fun q ->
|
||
Array.iter (fun p ->
|
||
m_pqr.{p,q,r} <- ERI.get_phys ee_ints p q r s
|
||
) (Util.array_range 1 n_ao)
|
||
) (Util.array_range 1 n_ao)
|
||
) (Util.array_range 1 n_ao);
|
||
|
||
(* Conversion d'un tableau a 3 indices en une matrice nao x nao^2 *)
|
||
let m_p_qr =
|
||
Bigarray.reshape (Bigarray.genarray_of_array3 m_pqr) [| n_ao ; n_ao*n_ao |]
|
||
|> Bigarray.array2_of_genarray
|
||
in
|
||
|
||
let m_qr_i =
|
||
(* (qr,i) = <i r|q s> = \sum_p <p r | q s> C_{pi} *)
|
||
gemm ~transa:`T ~c:m_qr_i m_p_qr m_C
|
||
in
|
||
|
||
let m_q_ri =
|
||
(* Transformation de la matrice (qr,i) en (q,ri) *)
|
||
Bigarray.reshape_2 (Bigarray.genarray_of_array2 m_qr_i) n_ao (n_ao*n_mo)
|
||
in
|
||
|
||
let m_ri_j =
|
||
(* (ri,j) = <i r | j s> = \sum_q <i r | q s> C_{bj} *)
|
||
gemm ~transa:`T ~c:m_ri_j m_q_ri m_C
|
||
in
|
||
|
||
let m_r_ij =
|
||
(* Transformation de la matrice (ri,j) en (r,ij) *)
|
||
Bigarray.reshape_2 (Bigarray.genarray_of_array2 m_ri_j) n_ao (n_mo*n_mo)
|
||
in
|
||
|
||
let m_ij_k =
|
||
(* (ij,k) = <i k | j s> = \sum_r <i r | j s> C_{rk} *)
|
||
gemm ~transa:`T ~c:m_ij_k m_r_ij m_C
|
||
in
|
||
|
||
let m_ijk =
|
||
(* Transformation de la matrice (ei,j) en (e,ij) *)
|
||
Bigarray.reshape (Bigarray.genarray_of_array2 m_ij_k) [| n_mo ; n_mo ; n_mo |]
|
||
|> Bigarray.array3_of_genarray
|
||
in
|
||
|
||
Array.iter (fun j ->
|
||
Array.iter (fun i ->
|
||
m_b12.{i,j} <- m_b12.{i,j} +. m_C.{s,j} *. (m_ijk.{i,i,i} -. m_ijk.{j,i,j});
|
||
m_a12.{i,j} <- m_a12.{i,j} +. m_ijk.{i,i,j} *. m_C.{s,j} -.
|
||
0.25 *. ( (m_ijk.{i,i,i} -. m_ijk.{j,i,j}) *. m_C.{s,i} +.
|
||
(m_ijk.{j,j,j} -. m_ijk.{i,j,i}) *. m_C.{s,j})
|
||
) (Util.array_range 1 n_mo);
|
||
v_d.{j} <- v_d.{j} +. m_ijk.{j,j,j} *. m_C.{s,j}
|
||
) (Util.array_range 1 n_mo)
|
||
) (Util.array_range 1 n_ao);
|
||
|
||
(Mat.init_cols n_mo n_mo ( fun i j ->
|
||
if i= j
|
||
then 0.
|
||
else if asin( m_b12.{i,j} /. sqrt(m_b12.{i,j}**2. +. m_a12.{i,j}**2.)) > 0.
|
||
then 0.25 *. acos( -. m_a12.{i,j} /. sqrt(m_b12.{i,j}**2. +. m_a12.{i,j}**2.))
|
||
else -. 0.25 *. acos( -. m_a12.{i,j} /. sqrt(m_b12.{i,j}**2. +. m_a12.{i,j}**2.)))
|
||
,Vec.sum v_d)
|
||
|
||
in
|
||
|
||
(* 3. Function for the Boys localization like the Edminston-Ruedenberg localization *)
|
||
(* Coefficient matrix n_ao x n_mo -> n_mo x n_mo matrix with angle between orbitals, localization Boys like ER criterion *)
|
||
(* Matrix -> matrix, float *)
|
||
let f_alpha_boys_er m_C =
|
||
|
||
let multipoles = AOBasis.multipole ao_basis in
|
||
let n_mo = Mat.dim2 m_C in
|
||
let phi_x_phi =
|
||
Multipole.matrix_x multipoles
|
||
|> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
|
||
in
|
||
let phi_y_phi =
|
||
Multipole.matrix_y multipoles
|
||
|> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
|
||
in
|
||
let phi_z_phi =
|
||
Multipole.matrix_z multipoles
|
||
|> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
|
||
in
|
||
let m_b12=
|
||
let b12 g = Mat.init_cols n_mo n_mo ( fun i j ->
|
||
(g.{i,i} -. g.{j,j}) *. g.{i,j})
|
||
in
|
||
Mat.add (b12 phi_x_phi) ( Mat.add (b12 phi_y_phi) (b12 phi_z_phi))
|
||
in
|
||
let m_a12 =
|
||
let a12 g = Mat.init_cols n_mo n_mo ( fun i j ->
|
||
g.{i,j} *. g.{i,j} -. 0.25 *. ((g.{i,i} -. g.{j,j}) *. (g.{i,i} -. g.{j,j})))
|
||
in
|
||
Mat.add (a12 phi_x_phi) ( Mat.add (a12 phi_y_phi) (a12 phi_z_phi))
|
||
|
||
in
|
||
(Mat.init_cols n_mo n_mo ( fun i j ->
|
||
if i=j
|
||
then 0.
|
||
else if +. 0.25 *. atan2 m_b12.{i,j} m_a12.{i,j} >= 0.
|
||
then pi /. 4. -. 0.25 *. atan2 m_b12.{i,j} m_a12.{i,j}
|
||
else -. pi /. 4. -. 0.25 *. atan2 m_b12.{i,j} m_a12.{i,j})
|
||
,0.5 *. Vec.sum(Vec.init n_mo ( fun i -> (phi_x_phi.{i,i})**2. +. (phi_y_phi.{i,i})**2. +. (phi_z_phi.{i,i})**2.)))
|
||
in
|
||
(* 4. Function for the original Boys localization *)
|
||
(* Coefficient matrix n_ao x n_mo -> (n_mo x n_mo matrix with angle between orbitals, localization criterion *)
|
||
(* Matrix -> matrix, float *)
|
||
let f_theta_boys m_C =
|
||
let multipoles = AOBasis.multipole ao_basis in
|
||
let n_mo = Mat.dim2 m_C
|
||
in
|
||
let phi_x_phi =
|
||
Multipole.matrix_x multipoles
|
||
|> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
|
||
in
|
||
let phi_y_phi =
|
||
Multipole.matrix_y multipoles
|
||
|> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
|
||
in
|
||
let phi_z_phi =
|
||
Multipole.matrix_z multipoles
|
||
|> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
|
||
in
|
||
let phi_x2_phi =
|
||
Multipole.matrix_x2 multipoles
|
||
|> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
|
||
in
|
||
let phi_y2_phi =
|
||
Multipole.matrix_y2 multipoles
|
||
|> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
|
||
in
|
||
let phi_z2_phi =
|
||
Multipole.matrix_z2 multipoles
|
||
|> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
|
||
in
|
||
let m_b_0 =
|
||
let b_0 g h = Mat.init_cols n_mo n_mo (fun i j ->
|
||
h.{i,i} +. h.{j,j} -. (g.{i,i}**2. +. g.{j,j}**2.))
|
||
in
|
||
Mat.add (b_0 phi_x_phi phi_x2_phi) (Mat.add (b_0 phi_y_phi phi_y2_phi) (b_0 phi_z_phi phi_z2_phi))
|
||
in
|
||
let m_beta =
|
||
let beta g = Mat.init_cols n_mo n_mo (fun i j ->
|
||
(g.{i,i} -. g.{j,j})**2. -. 4. *. g.{i,j}**2.)
|
||
in
|
||
Mat.add (beta phi_x_phi) (Mat.add (beta phi_y_phi) (beta phi_z_phi))
|
||
in
|
||
let m_gamma =
|
||
let gamma g = Mat.init_cols n_mo n_mo (fun i j ->
|
||
4. *. g.{i,j} *. (g.{i,i} -. g.{j,j}) )
|
||
in
|
||
Mat.add (gamma phi_x_phi) (Mat.add (gamma phi_y_phi) (gamma phi_z_phi))
|
||
in
|
||
let m_theta = Mat.init_cols n_mo n_mo (fun i j ->
|
||
if i = j
|
||
then 0.
|
||
else +. 0.25 *. atan2 m_gamma.{i,j} m_beta.{i,j})
|
||
in
|
||
let m_critere_B = Mat.init_cols n_mo n_mo (fun i j ->
|
||
0.5 *. (m_b_0.{i,j} +. 0.25 *. ((1. -. cos(4. *. m_theta.{i,j})) *. m_beta.{i,j} +. sin(4. *. m_theta.{i,j}) *. m_gamma.{i,j})))
|
||
|
||
in
|
||
m_theta, Vec.sum(Mat.as_vec m_critere_B)
|
||
in
|
||
|
||
(* Function to compute the new angle after rotation between the 2 orbitals j1 and j2, by the Boys like ER localization *)
|
||
(* n_mo x n_mo matrix with angle between orbitals, index of the orbital j1, index of the orbital j2 -> n_mo x 2 matrix with the new angles between j1 and j2, new localization criterion *)
|
||
(* matrix, integer, integer -> matrix, float *)
|
||
let f2_alpha_boys_er m_C j1 j2=
|
||
let multipoles = AOBasis.multipole ao_basis in
|
||
let n_mo = Mat.dim2 m_C
|
||
in
|
||
let phi_x_phi =
|
||
Multipole.matrix_x multipoles
|
||
|> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
|
||
in
|
||
let phi_y_phi =
|
||
Multipole.matrix_y multipoles
|
||
|> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
|
||
in
|
||
let phi_z_phi =
|
||
Multipole.matrix_z multipoles
|
||
|> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
|
||
in
|
||
|
||
let m_b12=
|
||
let b12 g = Mat.init_cols n_mo 2 ( fun i j ->
|
||
if j = 1
|
||
then (g.{i,i} -. g.{j1,j1}) *. g.{i,j1}
|
||
else (g.{i,i} -. g.{j2,j2}) *. g.{i,j2})
|
||
|
||
in
|
||
Mat.add (b12 phi_x_phi) ( Mat.add (b12 phi_y_phi) (b12 phi_z_phi))
|
||
in
|
||
let m_a12 =
|
||
let a12 g = Mat.init_cols n_mo 2 ( fun i j ->
|
||
if j = 1
|
||
then g.{i,j1} *. g.{i,j1} -. 0.25 *. ((g.{i,i} -. g.{j1,j1}) *. (g.{i,i} -. g.{j1,j1}))
|
||
else g.{i,j2} *. g.{i,j2} -. 0.25 *. ((g.{i,i} -. g.{j2,j2}) *. (g.{i,i} -. g.{j2,j2})))
|
||
in
|
||
Mat.add (a12 phi_x_phi) ( Mat.add (a12 phi_y_phi) (a12 phi_z_phi))
|
||
in
|
||
(Mat.init_cols n_mo 2 ( fun i j ->
|
||
if i=j1 && j=1
|
||
then 0.
|
||
else if i = j2 && j=2
|
||
then 0.
|
||
else if +. 0.25 *. atan2 m_b12.{i,j} m_a12.{i,j} >= 0.
|
||
then pi /. 4. -. 0.25 *. atan2 m_b12.{i,j} m_a12.{i,j}
|
||
else -. pi /. 4. -. 0.25 *. atan2 m_b12.{i,j} m_a12.{i,j}),
|
||
Vec.sum(Vec.init n_mo ( fun i -> (phi_x_phi.{i,i})**2. +. (phi_y_phi.{i,i})**2. +. (phi_z_phi.{i,i})**2.)))
|
||
in
|
||
|
||
(* Function to compute the new angle after rotation between the 2 orbitals j1 and j2, by the Boys localization *)
|
||
(* n_mo x n_mo matrix with angles between orbitals, index of the orbital j1, index of the orbital j2 -> n_mo x 2 matrix with the new angles between j1 and j2, new localization criterion *)
|
||
(* matrix, integer, integer -> matrix, float *)
|
||
let f2_theta_boys m_C j1 j2 =
|
||
let multipoles = AOBasis.multipole ao_basis in
|
||
let n_mo = Mat.dim2 m_C
|
||
in
|
||
let phi_x_phi =
|
||
Multipole.matrix_x multipoles
|
||
|> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
|
||
in
|
||
let phi_y_phi =
|
||
Multipole.matrix_y multipoles
|
||
|> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
|
||
in
|
||
let phi_z_phi =
|
||
Multipole.matrix_z multipoles
|
||
|> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
|
||
in
|
||
let phi_x2_phi =
|
||
Multipole.matrix_x2 multipoles
|
||
|> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
|
||
in
|
||
let phi_y2_phi =
|
||
Multipole.matrix_y2 multipoles
|
||
|> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
|
||
in
|
||
let phi_z2_phi =
|
||
Multipole.matrix_z2 multipoles
|
||
|> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
|
||
in
|
||
|
||
let m_beta =
|
||
let beta g = Mat.init_cols n_mo 2 (fun i j ->
|
||
if j = 1
|
||
then (g.{i,i} -. g.{j1,j1})**2. -. 4. *. g.{i,j1}**2.
|
||
else (g.{i,i} -. g.{j2,j2})**2. -. 4. *. g.{i,j2}**2.)
|
||
in Mat.add (beta phi_x_phi) (Mat.add (beta phi_y_phi) (beta phi_z_phi))
|
||
in
|
||
|
||
let m_gamma =
|
||
let gamma g = Mat.init_cols n_mo 2 (fun i j ->
|
||
if j = 1
|
||
then 4. *. g.{i,j1} *. (g.{i,i} -. g.{j1,j1})
|
||
else 4. *. g.{i,j2} *. (g.{i,i} -. g.{j2,j2}))
|
||
in Mat.add (gamma phi_x_phi) (Mat.add (gamma phi_y_phi) (gamma phi_z_phi))
|
||
in
|
||
|
||
let m_theta = Mat.init_cols n_mo 2 (fun i j ->
|
||
if i=j1 && j=1
|
||
then 0.
|
||
else if i = j2 && j=2
|
||
then 0.
|
||
else +. 0.25 *. atan2 m_gamma.{i,j} m_beta.{i,j})
|
||
in
|
||
let m_critere_B = Vec.init n_mo (fun i ->
|
||
phi_x2_phi.{i,i} -. phi_x_phi.{i,i}**2. +. phi_y2_phi.{i,i} -. phi_y_phi.{i,i}**2. +. phi_z2_phi.{i,i} -. phi_z_phi.{i,i}**2.)
|
||
|
||
in m_theta, Vec.sum( m_critere_B)
|
||
in
|
||
|
||
(* 5. Pattern matching : choice of the localization method *)
|
||
(* The method, coefficient matrix n_ao x n_mo -> n_mo x n_mo matrix with the angle between orbitals using previous function, localization criterion *)
|
||
(* string, matrix -> matrix, float *)
|
||
|
||
let m_alpha_d methode m_C =
|
||
|
||
let alpha methode =
|
||
match methode with
|
||
| "Boys_er"
|
||
| "BOYS_ER"
|
||
| "boys_er" -> let alpha_boys , d_boys = f_alpha_boys_er m_C in {m_alpha = alpha_boys; d = d_boys}
|
||
| "Boys"
|
||
| "boys"
|
||
| "BOYS" -> let theta_boys, b_boys = f_theta_boys m_C in {m_alpha = theta_boys; d = b_boys}
|
||
| "ER"
|
||
| "er" -> let alpha_er , d_er = f_alpha_er m_C in {m_alpha = alpha_er; d = d_er}
|
||
| _ -> invalid_arg "Unknown method, please enter Boys or ER"
|
||
|
||
in
|
||
alpha methode
|
||
in
|
||
|
||
(* 5. Pattern matching : choice of the localization method to compute the n_mo x 2 new angles and not the n_mo x n_mo angles, after the rotation of i and j orbitals *)
|
||
(* The method, coefficient matrix n_ao x n_mo, index of the orbital i , index of the orbital j -> n_mo x 2 matrix with the new angle between orbitals i and j using previous function, new localization criterion *)
|
||
(* string, matrix, integer, integer -> matrix, float *)
|
||
let f_speed_alpha methode m_C indice_i indice_j =
|
||
let alpha_speed methode =
|
||
|
||
match methode with
|
||
| "Boys_er"
|
||
| "boys_er" -> let m_alpha, critere_D = f2_alpha_boys_er m_C indice_i indice_j in {m_alpha = m_alpha; d = critere_D}
|
||
| "BOYS" -> let m_alpha, critere_D = f2_theta_boys m_C indice_i indice_j in {m_alpha = m_alpha; d = critere_D}
|
||
| _ -> invalid_arg "Unknown method, please enter Boys or ER"
|
||
|
||
in
|
||
alpha_speed methode
|
||
|
||
in
|
||
(* 6. Norm of a matrix *)
|
||
(* Matrix -> float *)
|
||
let norm m =
|
||
|
||
let vec_m = Mat.as_vec m in
|
||
let vec2 = Vec.sqr vec_m
|
||
in
|
||
sqrt(Vec.sum vec2)
|
||
in
|
||
|
||
(* 7. Calculation of the max angle[-pi/.4 , pi/.4] and its indexes i and j in the matrix *)
|
||
(* n_mo x n_mo matrix with angles between orbitals, coefficient matrix n_ao x n_mo, max number of iteration -> max angle, line location, column location *)
|
||
(* matrix, matrix, integer -> float, integer, integer *)
|
||
let rec new_m_alpha m_alpha m_C n_rec_alpha=
|
||
|
||
let n_mo = Mat.dim2 m_C in
|
||
let alpha_m =
|
||
if n_rec_alpha == 0
|
||
then m_alpha
|
||
else
|
||
Mat.init_cols n_mo n_mo (fun i j ->
|
||
if (m_alpha.{i,j}) >= (pi /. 2.)
|
||
then (m_alpha.{i,j} -. ( pi /. 2.))
|
||
else if m_alpha.{i,j} <= -. pi /. 2.
|
||
then (m_alpha.{i,j} +. ( pi /. 2.))
|
||
else m_alpha.{i,j} )
|
||
in
|
||
|
||
(* Location of the max angle in the matrix *)
|
||
(* angle matrix -> location of the max element *)
|
||
(* matrix -> integer *)
|
||
let max_element alpha_m =
|
||
Mat.as_vec alpha_m
|
||
|> iamax
|
||
in
|
||
|
||
(* Indexes i and j of the max angle *)
|
||
(* -> integer, integer *)
|
||
let indice_ii, indice_jj =
|
||
let max = max_element alpha_m
|
||
in
|
||
(max - 1) mod n_mo +1, (max - 1) / n_mo +1
|
||
in
|
||
|
||
(* Value of the max angle *)
|
||
(* angle matrix -> value of the max angle*)
|
||
(* matrix -> float *)
|
||
let alpha alpha_m =
|
||
let i = indice_ii in
|
||
let j = indice_jj
|
||
in
|
||
alpha_m.{i,j}
|
||
in
|
||
let alpha_max = alpha alpha_m
|
||
|
||
in
|
||
if alpha_max < pi /. 2.
|
||
then {alpha_max; indice_ii; indice_jj}
|
||
else new_m_alpha alpha_m m_C (n_rec_alpha-1)
|
||
in
|
||
|
||
(* 8. Rotation matrix 2x2 *)
|
||
(* angle -> 2x2 rotation matrix *)
|
||
(* float -> matrix *)
|
||
let f_R alpha =
|
||
|
||
Mat.init_cols 2 2 (fun i j ->
|
||
if i=j
|
||
then cos alpha
|
||
else if i>j
|
||
then sin alpha
|
||
else -. sin alpha )
|
||
in
|
||
|
||
(* 9. Rotation matrix nxn *)
|
||
(* Coefficient matrix n_ao x n_mo, angle -> new coefficient matrix n_ao x n_mo after a rotation with a small angle *)
|
||
(* matrix, float -> matrix *)
|
||
let rotate m_C angle=
|
||
|
||
let n_mo = Mat.dim2 m_C in
|
||
|
||
(* Antisymmetrization of the matrix and diagonal terms = 0, X *)
|
||
(* angle -> Antisymmetric matrix with this angle and diagonal terms = 0 *)
|
||
(* float -> matrix *)
|
||
let m_angle angle=
|
||
|
||
Mat.init_cols n_mo n_mo (fun i j ->
|
||
if i = j
|
||
then 0.
|
||
else if i>j
|
||
then -. angle
|
||
else angle)
|
||
in
|
||
|
||
let m = m_angle angle in
|
||
|
||
(* Square of the matrix X² *)
|
||
(* -> X . X *)
|
||
(* -> matrix*)
|
||
let mm = gemm m m in
|
||
|
||
(* Diagonalization of X² *)
|
||
(* diag = vector that contains the eigenvalues (-tau²), mm contains the eigenvectors (W) *)
|
||
(* -> vector *)
|
||
let diag = syev ~vectors:true mm in
|
||
|
||
(* -tau² to tau² *)
|
||
(* -> vector that contains the eigenvalues (tau²) *)
|
||
(* -> vector *)
|
||
let square_tau= Vec.abs diag in
|
||
|
||
(* tau² to tau *)
|
||
(* -> vector that contains the eigenvalues tau *)
|
||
(* -> vector *)
|
||
let tau = Vec.sqrt square_tau in
|
||
|
||
(* Calculation of cos tau from the vector tau *)
|
||
(* -> cos(tau) *)
|
||
(* -> integer *)
|
||
let cos_tau = Vec.cos tau in
|
||
|
||
(* Matrix cos tau *)
|
||
(* -> matrix with diagonal terms cos(tau) and 0 also *)
|
||
(* -> matrix *)
|
||
let m_cos_tau =
|
||
|
||
Mat.init_cols n_mo n_mo (fun i j ->
|
||
if i=j
|
||
then cos_tau.{i}
|
||
else 0.)
|
||
in
|
||
|
||
(* Calcul of sin(tau) from the vector tau *)
|
||
let sin_tau = Vec.sin tau in
|
||
|
||
(* Matrix sin tau *)
|
||
(* -> matrix with diagonal terms sin(tau) and 0 also *)
|
||
(* -> matrix *)
|
||
let m_sin_tau =
|
||
|
||
Mat.init_cols n_mo n_mo (fun i j ->
|
||
if i=j
|
||
then sin_tau.{i}
|
||
else 0.)
|
||
in
|
||
|
||
(* Calculation of the transposed matrix of W (X²) *)
|
||
(* -> transposed matrix of W *)
|
||
(* -> matrix *)
|
||
let transpose_mm = Mat.transpose_copy mm in
|
||
|
||
(* Calculation of the vector tau^-1 *)
|
||
(* -> vector tau^-1 *)
|
||
(* -> vector *)
|
||
let tau_1 =
|
||
|
||
Vec.init n_mo (fun i ->
|
||
if tau.{i}<= 0.001
|
||
then 1.
|
||
else 1. /. tau.{i})
|
||
in
|
||
(* Calculation of the matrix tau^⁻1 *)
|
||
(* -> matrix tau^-1 *)
|
||
(* -> matrix *)
|
||
let m_tau_1 =
|
||
|
||
Mat.init_cols n_mo n_mo (fun i j ->
|
||
if i=j
|
||
then tau_1.{i}
|
||
else 0.)
|
||
in
|
||
|
||
(* gemm mm (gemm m_cos_tau transpose_mm) -> W cos(tau) Wt *)
|
||
(* -> matrix *)
|
||
let a = gemm mm (gemm m_cos_tau transpose_mm) in
|
||
|
||
(* gemm mm (gemm m_tau_1 ( gemm m_sin_tau (gemm transpose_mm m))) -> W tau^-1 sin(tau) Wt X *)
|
||
(* -> matrix *)
|
||
let b = gemm mm (gemm m_tau_1 ( gemm m_sin_tau (gemm transpose_mm m))) in
|
||
|
||
(* Sum of a + b -> Rotation matrix *)
|
||
(* -> Rotation matrix *)
|
||
(* -> matrix *)
|
||
let m_r = Mat.add a b
|
||
in
|
||
gemm m_C m_r
|
||
in
|
||
|
||
(* Function to extract 2 vectors i and j in a matrix *)
|
||
(* Coefficient matrix n_ao x n_mo, index of the orbital i, index of the orbital j -> n_mo x 2 matrix with the eigenvetors i and j*)
|
||
(* matrix, integer, integer -> matrix *)
|
||
let f_Ksi indice_i indice_j m_C =
|
||
let n_ao = Mat.dim1 m_C
|
||
|
||
in
|
||
Mat.init_cols n_ao 2 (fun i j ->
|
||
if j=1
|
||
then m_C.{i,indice_i}
|
||
else m_C.{i,indice_j} )
|
||
in
|
||
|
||
(* Function to apply a rotation with a 2x2 rotation matrix on a n_mo x 2 matrix that contains i and j *)
|
||
(* 2x2 rotation matrix, n_mo x 2 eigenvetors(i and j) matrix -> n_mo x 2 new eigenvetors(i~ and j~) after rotation *)
|
||
(* matrix, matrix -> matrix *)
|
||
let f_Ksi_tilde m_R m_Ksi = gemm m_Ksi m_R
|
||
in
|
||
|
||
(* Function to create intermediate coefficient matrix in order to delete the i j orbitals and add i~ j~ in the coefficient matrix *)
|
||
(* n_mo x 2 matrix with k and l orbitals, index of k, index of l, n_ao x n_mo matrix coefficient -> matrix where all terms are equal to 0 except the k and l columns that contain the eigenvetors k and l *)
|
||
(* matrix, integer, integer, matrix -> matrix *)
|
||
let f_k mat indice_i indice_j m_C =
|
||
let n_mo = Mat.dim2 m_C in
|
||
let n_ao = Mat.dim1 m_C
|
||
|
||
in
|
||
Mat.init_cols n_ao n_mo (fun i j ->
|
||
if j=indice_i
|
||
then mat.{i,1}
|
||
else if j=indice_j
|
||
then mat.{i,2}
|
||
else 0.)
|
||
in
|
||
|
||
(* Function to create a intermediate angle matrix in order to delete all the previous angle between i and all the other orbitals, j and all the other orbitals.
|
||
And add the new angles between these orbitals *)
|
||
(* n_mo x 2 matrix with angles between k and all the other orbitals l and all the other orbitals, index of k, index of l, coefficent matrix n_ao x n_mo -> matrix where all terms are equal to 0 except the k and l lines and columns that contains the angles between the orbitals *)
|
||
(* matrix, integer, integer, matrix -> matrix *)
|
||
let f_k_angle mat indice_i indice_j m_C =
|
||
let n_mo = Mat.dim2 m_C
|
||
|
||
in
|
||
Mat.init_cols n_mo n_mo (fun i j ->
|
||
if j=indice_i
|
||
then mat.{i,1}
|
||
else if j=indice_j
|
||
then mat.{i,2}
|
||
else if i = indice_i
|
||
then -. mat.{j,1}
|
||
else if i = indice_j
|
||
then -. mat.{j,2}
|
||
else 0.)
|
||
in
|
||
|
||
(* Intermediate matrix where the i and j orbitals are equal to 0 *)
|
||
(* Coefficient matrix n_ao x n_mo, matrix where terms are equal to 0 except the k and l columns that contain the eigenvetors k and l *)
|
||
(* matrix, matrix -> matrix *)
|
||
let f_interm m_C mat =
|
||
|
||
Mat.sub m_C mat
|
||
in
|
||
|
||
(* Function to compute the new coefficient matrix after a rotation between 2 orbitals *)
|
||
(* coefficient matrix n_ao x n_mo, angle matrix, parameter -> new coefficient matrix n_ao x n_mo *)
|
||
let new_m_C m_C m_alpha epsilon =
|
||
|
||
(* alphaij contains the max angle of the angle matrix and the indexes *)
|
||
let n_rec_alpha = 10 in
|
||
let alphaij = new_m_alpha m_alpha m_C n_rec_alpha in
|
||
|
||
(* Value of the angle *)
|
||
let alpha = (alphaij.alpha_max) *. epsilon in
|
||
|
||
(* Localtion of the max angle *)
|
||
let indice_i = alphaij.indice_ii in
|
||
let indice_j = alphaij.indice_jj in
|
||
|
||
(* Rotation matrix *)
|
||
let m_R = f_R alpha in
|
||
|
||
(* Matrix with i and j orbitals *)
|
||
let m_Ksi = f_Ksi indice_i indice_j m_C in
|
||
|
||
(* Matrix with the new i~ and j~ orbitals *)
|
||
let m_Ksi_tilde = f_Ksi_tilde m_R m_Ksi in
|
||
|
||
(* Matrix to delete the i and j orbitals in the coefficient matrix *)
|
||
let m_Psi = f_k m_Ksi indice_i indice_j m_C in
|
||
|
||
(* Matrix to add the i~ and j~ orbitals in the coefficient matrix *)
|
||
let m_Psi_tilde = f_k m_Ksi_tilde indice_i indice_j m_C in
|
||
|
||
(* Coefficient matrix without the i and j orbitals *)
|
||
let m_interm = f_interm m_C m_Psi
|
||
|
||
in
|
||
(* Matrice after rotation, max angle, index i, index j *)
|
||
(Mat.add m_Psi_tilde m_interm, alpha, indice_i, indice_j)
|
||
in
|
||
|
||
(* Function to compute the new angle matrix after one rotation between 2 orbitals *)
|
||
(* Previous angle matrix n_mo x n_mo, new coefficient matrix n_ao x n_mo, previous angle matrix, index of the orbital i, index of the orbital j -> new angle matrix, new localization criterion *)
|
||
(* matrix, matrix, matrix, integer, integer -> matrix, float *)
|
||
let m_alpha m_new_m_C prev_m_alpha indice_i indice_j =
|
||
|
||
(* n_mo x 2 matrix that contains the new angles between i,j with the other orbitals *)
|
||
let speed_alphad = f_speed_alpha methode m_new_m_C indice_i indice_j in
|
||
|
||
(* New localization criterion *)
|
||
let critere_D = speed_alphad.d in
|
||
|
||
(* Previous angles *)
|
||
let ksi_angle = f_Ksi indice_i indice_j prev_m_alpha in
|
||
|
||
(* New angles *)
|
||
let ksi_angle_tilde = speed_alphad.m_alpha in
|
||
|
||
(* Matrix to delete the previous angles *)
|
||
let psi_angle = f_k_angle ksi_angle indice_i indice_j m_new_m_C in
|
||
|
||
(* Matrix to add the new angles *)
|
||
let psi_tilde_angle = f_k_angle ksi_angle_tilde indice_i indice_j m_new_m_C in
|
||
|
||
(* Matrix without the angles between i, j and the orbitals *)
|
||
let m_interm = f_interm prev_m_alpha psi_angle
|
||
|
||
in
|
||
(* New angle matrix, new localization criterion *)
|
||
(Mat.add m_interm psi_tilde_angle, critere_D)
|
||
in
|
||
|
||
|
||
|
||
(* III. Localization *)
|
||
|
||
(* Loop to compute the new coefficient matrix avec n orbital rotations *)
|
||
(* Coefficeient matrix n_ao x n_mo, localization method, parameter, max number of iteration, previous localization criterion, previous angle matrix, convergence criterion -> new coefficient matrix after n orbital rotations *)
|
||
(* matrix, string, float, integer, float, matrix, float -> matrix *)
|
||
let rec localisation m_C methode epsilon n prev_critere_D prev_m_alpha cc =
|
||
|
||
if n == 0
|
||
then m_C
|
||
else
|
||
|
||
(* New coefficient matrix after one rotation *)
|
||
let m_new_m_C, alpha_max, indice_i, indice_j = new_m_C m_C prev_m_alpha epsilon in
|
||
|
||
(* New angle matrix after one rotation *)
|
||
let m_alpha, critere_D = m_alpha m_new_m_C prev_m_alpha indice_i indice_j in
|
||
|
||
(* Matrix norm, angle average *)
|
||
|
||
let norm_alpha = norm m_alpha in
|
||
let moyenne_alpha = norm_alpha /. (float_of_int((Mat.dim1 m_C)* (Mat.dim2 m_C))) in
|
||
let alpha = alpha_max /. epsilon in
|
||
|
||
Printf.printf "%i %f %f %f %f\n%!" (iteration-n) critere_D alpha norm_alpha moyenne_alpha;
|
||
|
||
(* Convergence criterion *)
|
||
if alpha_max**2. < cc**2.
|
||
then m_new_m_C
|
||
else localisation m_new_m_C methode epsilon (n-1) critere_D m_alpha cc
|
||
in
|
||
|
||
(* 2. Localization function *)
|
||
let localise localisation m_C methode epsilon n cc =
|
||
|
||
let alphad = m_alpha_d methode m_C in
|
||
let prev_m_alpha = alphad.m_alpha in
|
||
let prev_critere_D = 0.
|
||
in
|
||
localisation m_C methode epsilon n prev_critere_D prev_m_alpha cc
|
||
in
|
||
|
||
(* IV : Functions to split and assemble matrix *)
|
||
|
||
(* Function to create a integer list from a vector of float *)
|
||
(* float vector -> integer list *)
|
||
let int_list vec =
|
||
|
||
let float_list = Vec.to_list vec in
|
||
let g a = int_of_float(a)
|
||
in
|
||
List.map g float_list
|
||
in
|
||
|
||
(* Function to create a list from the missing elements of an other list*)
|
||
(* Coefficient matrix n_ao x n_mo, list -> list of missing element of the previous list *)
|
||
(* matrix, integer list -> integer list *)
|
||
let miss_elem mat list =
|
||
|
||
let n_mo = Mat.dim2 mat in
|
||
let vec = Vec.init (n_mo) (fun i ->
|
||
if List.mem i list
|
||
then 0.
|
||
else float_of_int(i))
|
||
in
|
||
let list_int = int_list vec
|
||
in
|
||
List.filter (fun x -> x > 0) list_int
|
||
in
|
||
|
||
(* Function to split a matrix in 2 matrix, the first matrix corresponds to the column number whose number is in the list, the second matrix corresponds to the column which are not in the list *)
|
||
(* Coefficient matrix n_ao x n_mo, list -> matrix, matrix *)
|
||
(* matrix, integer list -> matrix, matrix*)
|
||
let split_mat mat list =
|
||
|
||
let vec_of_mat = Mat.to_col_vecs mat in
|
||
let f a = vec_of_mat.(a-1) in
|
||
let vec_list_1 = List.map f list in
|
||
let list_2 = miss_elem mat list in
|
||
let vec_list_2 = List.map f list_2
|
||
in
|
||
(Mat.of_col_vecs_list vec_list_1,Mat.of_col_vecs_list vec_list_2)
|
||
in
|
||
|
||
|
||
(* Function to create a matrix from a list*)
|
||
(* Coefficient matrix n_ao x n_mo, list of orbitals -> matrix with these orbitals *)
|
||
(* matrix, integer list -> matrix*)
|
||
let create_mat mat list =
|
||
|
||
let vec_of_mat = Mat.to_col_vecs mat in
|
||
let f a = vec_of_mat.(a-1) in
|
||
let vec_list = List.map f list
|
||
in
|
||
Mat.of_col_vecs_list vec_list
|
||
in
|
||
|
||
(* List of the occupied MOs *)
|
||
let list_occ =
|
||
|
||
let vec_occ = Vec.init (nocc) (fun i -> float_of_int(i))
|
||
in
|
||
int_list vec_occ
|
||
in
|
||
|
||
(* List of the core MOs *)
|
||
let list_core =
|
||
let vec_core = Vec.init (n_core) (fun i -> float_of_int(i))
|
||
in int_list vec_core
|
||
in
|
||
|
||
(* Function to create a list of pi MOs *)
|
||
(* Coefficient matrix n_ao x n_mo -> list of pi orbitals *)
|
||
(* matrix -> integer list *)
|
||
let list_pi mat =
|
||
let n_mo = Mat.dim2 mat in
|
||
let m_pi = Mat.init_cols n_ao (n_mo+1) ( fun i j ->
|
||
if j=1 && m_C.{i,j}**2. < 10e-8**2.
|
||
then 0.
|
||
else if j=1
|
||
then m_C.{i,j}
|
||
else if mat.{i,j-1}**2. < 10e-8**2.
|
||
then 0.
|
||
else mat.{i,j-1})
|
||
in
|
||
let vec = Mat.to_col_vecs m_pi in
|
||
let vec_dot = Vec.init ((Mat.dim2 mat)) (fun i -> dot vec.(0) vec.(i)) in
|
||
let vec_pi = Vec.init ((Mat.dim2 mat)) (fun i ->
|
||
if vec_dot.{i} = 0.
|
||
then float_of_int(i)
|
||
else 0.)
|
||
in
|
||
let list_pi = int_list vec_pi in
|
||
let rec remove x list =
|
||
match list with
|
||
| [] -> []
|
||
| var :: tail -> if var = x
|
||
then remove x tail
|
||
else var :: (remove x tail)
|
||
in
|
||
remove 0 list_pi
|
||
in
|
||
|
||
(* Function to create a list of the (n-x_end) first MOs of a matrix *)
|
||
(* Coefficient matrix n_ao x n_mo -> list of the (n-x_end) first MOs of the matrix *)
|
||
(* matrix -> integer list *)
|
||
let list_x_end mat =
|
||
let n = Mat.dim2 mat in
|
||
let vec_x_end = Vec.init (n-x_end) (fun i -> float_of_int(i))
|
||
in
|
||
int_list vec_x_end
|
||
in
|
||
|
||
(* Function to create a list of the (n/2) first MOs of a matrix *)
|
||
(* Coefficient matrix n_ao x n_mo -> list of the (n/2) first MOs of the matrix *)
|
||
(* matrix -> integer list *)
|
||
let list_s_12 mat =
|
||
let n = Mat.dim2 mat in
|
||
let vec_12 = Vec.init (n/2) (fun i -> float_of_int(i))
|
||
in
|
||
int_list vec_12
|
||
in
|
||
|
||
(* Function to assemble to matrix with the same number of line *)
|
||
(* Coefficient matrix n_ao x n, coefficient matrix n_ao x m -> Coefficient matrix n_ao x (n+m) *)
|
||
(* matrix, matrix -> matrix*)
|
||
let assemble mat_1 mat_2 =
|
||
|
||
let v_mat_1 = Mat.to_col_vecs mat_1 in
|
||
let v_mat_2 = Mat.to_col_vecs mat_2 in
|
||
let m = Array.append v_mat_1 v_mat_2
|
||
in
|
||
Mat.of_col_vecs m
|
||
in
|
||
|
||
(* V. Calculation *)
|
||
|
||
(* 1. Caption *)
|
||
let text = "Method : " ^ methode ^ "; Separation type of the valence occupied MOs : " ^ type_separation_occu ^ "; Separation type of the virtual MOs : " ^ type_separation_vir ^ "; Max number of iteration : " ^ string_of_int(iteration) ^ "; cc : " ^ string_of_float(cc)^"; epsilon : "^string_of_float(epsilon)^"; charge : "^string_of_int(charge)^"; Rotation pre angle : "^string_of_float(pre_angle)
|
||
in
|
||
let caption = "n Criterion max_angle norm_angle average_angle"
|
||
in
|
||
Printf.printf "%s\n" "";
|
||
Printf.printf "%s\n" "Orbitals localization ";
|
||
Printf.printf "%s\n" "";
|
||
Printf.printf "%s\n" text;
|
||
Printf.printf "%s\n" "";
|
||
Printf.printf "%s\n" caption;
|
||
Printf.printf "%s\n" "";
|
||
|
||
(* Separation of the occupied and virtual MOs, valence and core MOs *)
|
||
let m_occ , m_vir = split_mat m_C list_occ in
|
||
|
||
let m_core, m_occu = split_mat m_occ list_core in
|
||
|
||
(* Localization function *)
|
||
(* Coefficient matrix n_ao x n_mo -> localized coefficient matrix n_ao x n_mo *)
|
||
(* matrix -> matrix *)
|
||
let f_localise mat =
|
||
|
||
if Mat.dim2 mat = 0
|
||
then Printf.printf "%s\n" "0 orbital, no localization";
|
||
|
||
let new_mat =
|
||
if Mat.dim2 mat = 0
|
||
then mat
|
||
else rotate mat pre_angle
|
||
in
|
||
if Mat.dim2 mat = 0
|
||
then new_mat
|
||
else localise localisation new_mat methode epsilon iteration cc
|
||
in
|
||
|
||
(* Core MOs localization *)
|
||
let loc_m_core =
|
||
Printf.printf "%s\n" "I/III";
|
||
Printf.printf "%s\n" "Localization of core orbitals";
|
||
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 m_core);
|
||
Printf.printf "%s\n" "";
|
||
|
||
f_localise m_core in
|
||
|
||
Printf.printf "%s\n" "";
|
||
Printf.printf "%s\n" "End I/III";
|
||
Printf.printf "%s\n" "";
|
||
|
||
(* Localization function without separation *)
|
||
let f_loc_assemble_1 mat =
|
||
|
||
Printf.printf "%s\n" "";
|
||
Printf.printf "%s\n" "Localization 1/1";
|
||
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat);
|
||
|
||
f_localise mat in
|
||
|
||
Printf.printf "%s\n" "";
|
||
|
||
(* Localization function with 1 MOs separation *)
|
||
let f_loc_assemble_12 mat list_12 =
|
||
|
||
if List.length(list_12 mat) + List.length(miss_elem mat (list_12 mat)) <> (Mat.dim2 mat)
|
||
then Printf.printf "%s\n" "Bug : List length problem (list_12 or miss_elem list_12)";
|
||
|
||
let mat_1, mat_2 = split_mat mat (list_12 mat) in
|
||
|
||
Printf.printf "%s\n" "";
|
||
Printf.printf "%s\n" "Localization 1/2";
|
||
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_1);
|
||
let m_loc_1 = f_localise mat_1 in
|
||
Printf.printf "%s\n" "";
|
||
|
||
Printf.printf "%s\n" "Localization 2/2";
|
||
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_2);
|
||
let m_loc_2 = f_localise mat_2 in
|
||
Printf.printf "%s\n" "";
|
||
|
||
assemble m_loc_1 m_loc_2
|
||
in
|
||
|
||
(* Localization function with 2 MOs separations *)
|
||
let f_loc_assemble_123 mat list_12 list_2ab =
|
||
|
||
if List.length(list_12 mat) + List.length(miss_elem mat (list_12 mat)) <> (Mat.dim2 mat)
|
||
then Printf.printf "%s\n" "Bug : List length problem (list_12 or miss_elem list_12)";
|
||
|
||
let mat_1, mat_2 = split_mat mat (list_12 mat) in
|
||
|
||
if List.length(list_2ab mat_2) + List.length(miss_elem mat_2 (list_2ab mat_2)) <> (Mat.dim2 mat_2)
|
||
then Printf.printf "%s\n" "Bug : List length problem (list_2ab or miss_elem list_2ab)";
|
||
|
||
let mat_2a, mat_2b = split_mat mat_2 (list_2ab mat_2) in
|
||
|
||
Printf.printf "%s\n" "";
|
||
Printf.printf "%s\n" "Localization 1/3";
|
||
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_1);
|
||
let m_loc_1 = f_localise mat_1 in
|
||
Printf.printf "%s\n" "";
|
||
|
||
Printf.printf "%s\n" "Localization 2/3";
|
||
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_2a);
|
||
let m_loc_2a = f_localise mat_2a in
|
||
Printf.printf "%s\n" "";
|
||
|
||
Printf.printf "%s\n" "Localization 3/3";
|
||
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_2b);
|
||
let m_loc_2b = f_localise mat_2b in
|
||
Printf.printf "%s\n" "";
|
||
|
||
let m_loc_2ab = assemble m_loc_2a m_loc_2b
|
||
in
|
||
|
||
assemble m_loc_1 m_loc_2ab
|
||
in
|
||
|
||
(* Localization function with 3 MOs separations *)
|
||
let f_loc_assemble_1234 mat list_12 list_1ab list_2ab =
|
||
|
||
if List.length(list_12 mat) + List.length(miss_elem mat (list_12 mat)) <> (Mat.dim2 mat)
|
||
then Printf.printf "%s\n" "Bug : List length problem (list_12 or miss_elem list_12)";
|
||
|
||
let mat_1, mat_2 = split_mat mat (list_12 mat) in
|
||
|
||
if List.length(list_1ab mat_1) + List.length(miss_elem mat (list_1ab mat_1)) <> (Mat.dim2 mat_1)
|
||
then Printf.printf "%s\n" "Bug : List length problem (list_1ab or miss_elem list_1ab)";
|
||
|
||
let mat_1a, mat_1b = split_mat mat_1 (list_1ab mat_1) in
|
||
|
||
if List.length(list_2ab mat_2) + List.length(miss_elem mat (list_2ab mat_1)) <> (Mat.dim2 mat_2)
|
||
then Printf.printf "%s\n" "Bug : List length problem (list_2ab or miss_elem list_2ab)";
|
||
|
||
let mat_2a, mat_2b = split_mat mat_2 (list_2ab mat_2) in
|
||
|
||
Printf.printf "%s\n" "";
|
||
Printf.printf "%s\n" "Localization 1/4";
|
||
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_1a);
|
||
let m_loc_1a = f_localise mat_1a in
|
||
Printf.printf "%s\n" "";
|
||
|
||
Printf.printf "%s\n" "Localization 2/4";
|
||
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_1b);
|
||
let m_loc_1b = f_localise mat_1b in
|
||
Printf.printf "%s\n" "";
|
||
|
||
Printf.printf "%s\n" "Localization 3/4";
|
||
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_2a);
|
||
let m_loc_2a = f_localise mat_2a in
|
||
Printf.printf "%s\n" "";
|
||
|
||
Printf.printf "%s\n" "Localization 4/4";
|
||
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_2b);
|
||
let m_loc_2b = f_localise mat_2b in
|
||
Printf.printf "%s\n" "";
|
||
|
||
let m_loc_1ab = assemble m_loc_1a m_loc_1b in
|
||
let m_loc_2ab = assemble m_loc_2a m_loc_2b
|
||
in
|
||
assemble m_loc_1ab m_loc_2ab
|
||
in
|
||
|
||
(* Localization function with 4 separations "by hands" *)
|
||
let f_loc_assemble_main mat list_1 list_2 list_3 list_4 =
|
||
|
||
if (List.length(list_1) + List.length(list_2) + List.length(list_3) + List.length(list_4)) <> (Mat.dim2 mat)
|
||
then Printf.printf "%s\n" "Bug : List length problem";
|
||
|
||
let mat_1 = create_mat mat list_1 in
|
||
let mat_2 = create_mat mat list_2 in
|
||
let mat_3 = create_mat mat list_3 in
|
||
let mat_4 = create_mat mat list_4 in
|
||
|
||
Printf.printf "%s\n" "";
|
||
Printf.printf "%s\n" "Localization 1/4";
|
||
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_1);
|
||
let loc_mat_1 = f_localise mat_1 in
|
||
Printf.printf "%s\n" "";
|
||
|
||
Printf.printf "%s\n" "Localization 2/4";
|
||
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_2);
|
||
let loc_mat_2 = f_localise mat_2 in
|
||
Printf.printf "%s\n" "";
|
||
|
||
Printf.printf "%s\n" "Localization 3/4";
|
||
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_3);
|
||
let loc_mat_3 = f_localise mat_3 in
|
||
Printf.printf "%s\n" "";
|
||
|
||
Printf.printf "%s\n" "Localization 4/4";
|
||
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_4);
|
||
let loc_mat_4 = f_localise mat_4
|
||
|
||
in
|
||
Printf.printf "%s\n" "";
|
||
assemble (assemble loc_mat_1 loc_mat_2) (assemble loc_mat_3 loc_mat_4)
|
||
in
|
||
|
||
(* Pattern matching for the separation type of the occupied MOs *)
|
||
let m_assemble_occ, m_assemble_occu =
|
||
|
||
let m_assemble_occu =
|
||
Printf.printf "%s\n" "II/III";
|
||
Printf.printf "%s\n" "Localization of valence orbitals";
|
||
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 m_occu);
|
||
match type_separation_occu with
|
||
| "full" -> let m_assemble_occu = f_loc_assemble_1 m_occu in m_assemble_occu
|
||
| "pi/sigma" -> let m_assemble_occu = f_loc_assemble_12 m_occu list_pi in m_assemble_occu
|
||
| "pi/sigma/end" -> let m_assemble_occu = f_loc_assemble_123 m_occu list_pi list_x_end in m_assemble_occu
|
||
| "pi/1/2" -> let m_assemble_occu = f_loc_assemble_123 m_occu list_pi list_s_12 in m_assemble_occu
|
||
| "1/2" -> let m_assemble_occu = f_loc_assemble_12 m_occu list_s_12 in m_assemble_occu
|
||
| "pi1/pi2/1/2" -> let m_assemble_occu = f_loc_assemble_1234 m_occu list_pi list_s_12 list_s_12 in m_assemble_occu
|
||
| "By_hands" -> let m_assemble_occu = f_loc_assemble_main m_occu (miss_elem m_occ []) [] [] [] in m_assemble_occu
|
||
| _ -> invalid_arg "Unknown separation type of valence orbitals"
|
||
in
|
||
Printf.printf "%s\n" "End II/III";
|
||
Printf.printf "%s\n" "";
|
||
(assemble loc_m_core m_assemble_occu, m_assemble_occu)
|
||
in
|
||
|
||
(* Pattern matching for the separation type of the virtual MOs *)
|
||
let m_assemble_vir =
|
||
|
||
let m_assemble_vir =
|
||
Printf.printf "%s\n" "III/III";
|
||
Printf.printf "%s\n" "Localization of virtual orbitals";
|
||
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 m_vir);
|
||
match type_separation_vir with
|
||
| "full" -> let m_assemble_vir = f_loc_assemble_1 m_vir in m_assemble_vir
|
||
| "pi/sigma" -> let m_assemble_vir = f_loc_assemble_12 m_vir list_pi in m_assemble_vir
|
||
| "pi/sigma/end" -> let m_assemble_vir = f_loc_assemble_123 m_vir list_pi list_x_end in m_assemble_vir
|
||
| "pi/1/2" -> let m_assemble_vir = f_loc_assemble_123 m_vir list_pi list_s_12 in m_assemble_vir
|
||
| "1/2" -> let m_assemble_vir = f_loc_assemble_12 m_vir list_s_12 in m_assemble_vir
|
||
| "pi1/pi2/1/2" -> let m_assemble_vir = f_loc_assemble_1234 m_vir list_pi list_s_12 list_s_12 in m_assemble_vir
|
||
| "By_hands" -> let m_assemble_vir = f_loc_assemble_main m_vir (miss_elem m_vir []) [] [] [] in m_assemble_vir
|
||
| _ -> invalid_arg "Unknown separation type of virtual orbitals"
|
||
in
|
||
Printf.printf "%s\n" "End III/III";
|
||
Printf.printf "%s\n" "";
|
||
m_assemble_vir
|
||
in
|
||
|
||
(* Tack occupied and virtual MOs together*)
|
||
let m_assemble_loc = assemble m_assemble_occ m_assemble_vir
|
||
in
|
||
|
||
(* VI. Analysis *)
|
||
|
||
(* Function to compute the spatial extent of MOs *)
|
||
(* Coefficient matrix n_ao x n_mo -> vector where the i th element is equal to the spatial extent of the i th orbital *)
|
||
(* Matrix -> vector *)
|
||
let distrib mat=
|
||
if Mat.dim1 mat = 0
|
||
then Mat.as_vec mat
|
||
else
|
||
(let multipoles = AOBasis.multipole ao_basis in
|
||
let n_mo = Mat.dim2 mat in
|
||
let phi_x_phi =
|
||
Multipole.matrix_x multipoles
|
||
|> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:mat
|
||
in
|
||
let phi_y_phi =
|
||
Multipole.matrix_y multipoles
|
||
|> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:mat
|
||
in
|
||
let phi_z_phi =
|
||
Multipole.matrix_z multipoles
|
||
|> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:mat
|
||
in
|
||
let phi_x2_phi =
|
||
Multipole.matrix_x2 multipoles
|
||
|> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:mat
|
||
in
|
||
let phi_y2_phi =
|
||
Multipole.matrix_y2 multipoles
|
||
|> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:mat
|
||
in
|
||
let phi_z2_phi =
|
||
Multipole.matrix_z2 multipoles
|
||
|> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:mat
|
||
in
|
||
Vec.init n_mo (fun i ->
|
||
phi_x2_phi.{i,i} -. phi_x_phi.{i,i}**2. +. phi_y2_phi.{i,i} -. phi_y_phi.{i,i}**2. +. phi_z2_phi.{i,i} -. phi_z_phi.{i,i}**2.))
|
||
in
|
||
|
||
(* Sorting function *)
|
||
(* tri insertion (<) list -> list in ascending order *)
|
||
(* parameter, list -> list *)
|
||
let rec insere comparaison elem liste = match liste with
|
||
| [] -> elem::[]
|
||
| tete::queue -> if comparaison elem tete
|
||
then elem :: liste
|
||
else tete :: insere comparaison elem queue
|
||
in
|
||
let rec tri_insertion comp = function
|
||
| [] -> []
|
||
| tete::queue -> insere comp tete (tri_insertion comp queue)
|
||
in
|
||
|
||
(* Sorting function to sort orbital spatial extent by ascending order *)
|
||
(* coefficient matrix n_ao x n_mo -> matrix n_ao x 2, first column corresponds to the spatial extent in function of the MOs number, the second column corresponds to the spatial extent in ascending order *)
|
||
(* matrix -> matrix *)
|
||
let m_distribution mat =
|
||
let vec_distrib= distrib mat in
|
||
let list_tri_distrib = tri_insertion (<) (Vec.to_list vec_distrib) in
|
||
let vec_tri_distrib = Vec.of_list list_tri_distrib
|
||
in
|
||
Mat.init_cols (Vec.dim vec_distrib) 2 (fun i j ->
|
||
if j=1
|
||
then vec_distrib.{i}
|
||
else vec_tri_distrib.{i})
|
||
|
||
in
|
||
|
||
(* Average/variance/standart deviation/median of spatial extent *)
|
||
(* Function to compute the average *)
|
||
let f_average mat =
|
||
if Mat.dim1 mat = 0
|
||
then 0.
|
||
else Vec.sum (distrib mat) /. float_of_int(Vec.dim (distrib mat))
|
||
in
|
||
|
||
(* Function to compute the variance *)
|
||
let f_variance mat =
|
||
if (Vec.dim (distrib mat)) = 0
|
||
then 0.
|
||
else Vec.sum(Vec.init (Vec.dim (distrib mat)) (fun i ->
|
||
((distrib mat).{i}-. (f_average mat))**2.)) /. float_of_int(Vec.dim (distrib mat))
|
||
in
|
||
|
||
(* Function to compute the standard deviation *)
|
||
let f_stand_dev mat =
|
||
if (Vec.dim (distrib mat)) = 0
|
||
then 0.
|
||
else sqrt(abs_float(f_variance mat))
|
||
in
|
||
|
||
(* Fonction de calcul de la mediane *)
|
||
let f_median mat =
|
||
if (Vec.dim (distrib mat)) = 0
|
||
then 0.
|
||
else
|
||
let vec_distrib= distrib mat in
|
||
let list_tri_distrib = tri_insertion (<) (Vec.to_list vec_distrib) in
|
||
let vec_tri_distrib = Vec.of_list list_tri_distrib
|
||
in
|
||
if (Vec.dim vec_distrib) mod 2 = 0
|
||
then (vec_tri_distrib.{(Vec.dim vec_distrib)/2} +. vec_tri_distrib.{((Vec.dim vec_distrib)/2)+1}) /. 2.
|
||
else vec_tri_distrib.{int_of_float(float_of_int(Vec.dim vec_distrib)/. 2.) + 1}
|
||
in
|
||
(* Display function *)
|
||
(* Coefficient matrix n_ao x n_mo -> string *)
|
||
(* matrix -> string *)
|
||
let analyse mat =
|
||
let average = f_average mat in
|
||
let variance = f_variance mat in
|
||
let stand_dev = f_stand_dev mat in
|
||
let median = f_median mat
|
||
in
|
||
"Average : "^string_of_float(average)^"; Median : "^string_of_float(median)^"; Variance : "^string_of_float(variance)^"; Standard deviation : "^string_of_float(stand_dev)
|
||
in
|
||
(* Display the numer of MOs *)
|
||
(* Coefficient matrix n_ao x n_mo -> string *)
|
||
(* matrix -> string *)
|
||
let n_orb mat = "Number of molecular orbitals : "^string_of_int(Mat.dim2 mat) in
|
||
|
||
(* Display *)
|
||
Printf.printf "%s\n" "";
|
||
Printf.printf "%s\n" (n_orb m_C);
|
||
Printf.printf "%s %i\n" "Number of pi orbitals : " (List.length (list_pi m_C));
|
||
Printf.printf "%s %i\n" "Number of occupied pi orbitals : " (List.length (list_pi m_occ));
|
||
Printf.printf "%s %i\n" "Number of virtual pi orbitals : " (List.length (list_pi m_vir));
|
||
Printf.printf "%s %i\n" "Number of sigma orbitals : " (List.length (miss_elem m_C (list_pi m_C)));
|
||
Printf.printf "%s %i\n" "Number of occupied sigma orbitals : " (List.length (miss_elem m_occ (list_pi m_occ)));
|
||
Printf.printf "%s %i\n" "Number of virtual sigma orbitals : " (List.length (miss_elem m_vir (list_pi m_vir)));
|
||
|
||
Printf.printf "%s\n" "";
|
||
|
||
Printf.printf "%s %s\n" "All MOs before the localization" (analyse m_C);
|
||
Printf.printf "%s %s\n" "All MOs after the localization" (analyse m_assemble_loc);
|
||
Printf.printf "%s\n" "";
|
||
Util.debug_matrix "Distribution of the spatial extent, before localization / sorting before localization / after localization / sorting after localization" (assemble(m_distribution m_C) (m_distribution m_assemble_loc));
|
||
|
||
Printf.printf "%s\n" "";
|
||
Printf.printf "%s %s\n" "Occupied orbitals : " (n_orb m_occ);
|
||
Printf.printf "%s %s\n" "Occupied orbitals before localization" (analyse m_occ);
|
||
Printf.printf "%s %s\n" "Occupied orbitals after localization" (analyse m_assemble_occ);
|
||
Printf.printf "%s\n" "";
|
||
|
||
Printf.printf "%s\n" "";
|
||
Printf.printf "%s %s\n" "Core orbitals : " (n_orb m_core);
|
||
Printf.printf "%s %s\n" "Core orbitalses before localization : " (analyse m_core);
|
||
Printf.printf "%s %s\n" "Core orbitals after localization : " (analyse loc_m_core);
|
||
Printf.printf "%s\n" "";
|
||
|
||
Printf.printf "%s\n" "";
|
||
Printf.printf "%s %s\n" "Valence orbitals : " (n_orb m_occu);
|
||
Printf.printf "%s %s\n" "Valence orbitals before localization : " (analyse m_occu);
|
||
Printf.printf "%s %s\n" "Valence rbitals after localization : " (analyse m_assemble_occu);
|
||
Printf.printf "%s\n" "";
|
||
|
||
Printf.printf "%s\n" "";
|
||
Printf.printf "%s %s\n" "Virtual orbitals : " (n_orb m_vir);
|
||
Printf.printf "%s %s\n" "Virtual orbitals before localization : " (analyse m_vir);
|
||
Printf.printf "%s %s\n" "Virtual orbitals after localization : " (analyse m_assemble_vir);
|
||
Printf.printf "%s\n" "";
|
||
|
||
m_assemble_loc
|
||
|
||
|