10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2024-12-22 20:33:36 +01:00
QCaml/SCF/HartreeFock.ml

706 lines
18 KiB
OCaml

open Lacaml.D
open Util
open Constants
type hartree_fock_data =
{
iteration : int ;
coefficients : Mat.t option ;
eigenvalues : Vec.t option ;
error : float option ;
diis : DIIS.t option ;
energy : float option ;
density : Mat.t option ;
density_a : Mat.t option ;
density_b : Mat.t option ;
fock : Fock.t option ;
fock_a : Fock.t option ;
fock_b : Fock.t option ;
}
type hartree_fock_kind =
| RHF (** Restricted Hartree-Fock *)
| ROHF (** Restricted Open-shell Hartree-Fock *)
| UHF (** Unrestricted Hartree-Fock *)
type t =
{
kind : hartree_fock_kind;
simulation : Simulation.t;
guess : Guess.t;
data : hartree_fock_data option lazy_t array;
nocc : int ;
}
let empty =
{
iteration = 0 ;
coefficients = None ;
eigenvalues = None ;
error = None ;
diis = None ;
energy = None ;
density = None ;
density_a = None ;
density_b = None ;
fock = None ;
fock_a = None ;
fock_b = None ;
}
module Si = Simulation
module El = Electrons
module Ao = AOBasis
module Ov = Overlap
let kind t = t.kind
let simulation t = t.simulation
let guess t = t.guess
let nocc t = t.nocc
let n_iterations t =
Array.fold_left (fun accu x ->
match Lazy.force x with
| Some x -> accu + 1
| None -> accu
) 0 t.data
let last_iteration t =
of_some @@ Lazy.force (t.data.(n_iterations t - 1))
let eigenvectors t =
let data = last_iteration t in
of_some data.coefficients
let eigenvalues t =
let data = last_iteration t in
of_some data.eigenvalues
let density t =
let data = last_iteration t in
match kind t with
| RHF -> of_some data.density
| ROHF -> Mat.add (of_some data.density_a) (of_some data.density_b)
| _ -> failwith "Not implemented"
let occupation t =
let n_alfa, n_beta =
El.n_alfa @@ Simulation.electrons @@ simulation t,
El.n_beta @@ Simulation.electrons @@ simulation t
in
match kind t with
| RHF -> Vec.init (Mat.dim2 @@ eigenvectors t) (fun i ->
if i <= nocc t then 2.0 else 0.0)
| ROHF -> Vec.init (Mat.dim2 @@ eigenvectors t) (fun i ->
if i <= n_beta then 2.0 else
if i <= n_alfa then 1.0 else
0.0)
| _ -> failwith "Not implemented"
let energy t =
let data = last_iteration t in
of_some data.energy
let nuclear_repulsion t =
Si.nuclear_repulsion (simulation t)
let ao_basis t =
Si.ao_basis (simulation t)
let kin_energy t =
let m_T =
ao_basis t
|> Ao.kin_ints
|> KinInt.matrix
in
let m_P = density t in
Mat.gemm_trace m_P m_T
let eN_energy t =
let m_V =
ao_basis t
|> Ao.eN_ints
|> NucInt.matrix
in
let m_P = density t in
Mat.gemm_trace m_P m_V
let coulomb_energy t =
let data =
last_iteration t
in
match kind t with
| RHF -> let m_P = of_some data.density in
let fock = of_some data.fock in
let m_J = Fock.coulomb fock in
0.5 *. Mat.gemm_trace m_P m_J
| ROHF -> let m_P_a = of_some data.density_a in
let m_P_b = of_some data.density_b in
let fock_a = of_some data.fock_a in
let fock_b = of_some data.fock_b in
let m_J_a = Fock.coulomb fock_a in
let m_J_b = Fock.coulomb fock_b in
0.5 *. ( (Mat.gemm_trace m_P_a m_J_a) +. (Mat.gemm_trace m_P_b m_J_b) )
| _ -> failwith "Not implemented"
let exchange_energy t =
let data =
last_iteration t
in
match kind t with
| RHF -> let m_P = of_some data.density in
let fock = of_some data.fock in
let m_K = Fock.exchange fock in
0.5 *. Mat.gemm_trace m_P m_K
| ROHF -> let m_P_a = of_some data.density_a in
let m_P_b = of_some data.density_b in
let fock_a = of_some data.fock_a in
let fock_b = of_some data.fock_b in
let m_K_a = Fock.exchange fock_a in
let m_K_b = Fock.exchange fock_b in
0.5 *. ( (Mat.gemm_trace m_P_a m_K_a) +. (Mat.gemm_trace m_P_b m_K_b) )
| _ -> failwith "Not implemented"
let make
?kind
?guess:(guess=`Huckel)
?max_scf:(max_scf=64)
?level_shift:(level_shift=0.1)
?threshold_SCF:(threshold_SCF=1.e-8)
simulation =
(* Number of occupied MOs *)
let n_alfa, n_beta =
El.n_alfa @@ Si.electrons simulation,
El.n_beta @@ Si.electrons simulation
in
let nocc = n_alfa in
let kind =
match kind with
| Some kind -> kind
| None -> if (n_alfa = n_beta) then RHF else ROHF
in
let nuclear_repulsion =
Si.nuclear_repulsion simulation
in
let ao_basis =
Si.ao_basis simulation
in
(* Orthogonalization matrix *)
let m_X =
Ao.ortho ao_basis
in
(* Overlap matrix *)
let m_S =
Ao.overlap ao_basis
|> Ov.matrix
in
(* Level shift in MO basis *)
let m_LSmo =
Array.init (Mat.dim2 m_X) (fun i ->
if i > nocc then level_shift else 0.)
|> Vec.of_array
|> Mat.of_diag
in
(* Guess coefficients *)
let guess =
Guess.make ~nocc ~guess ao_basis
in
let m_C =
let c_of_h m_H =
let m_Hmo = xt_o_x m_H m_X in
let m_C', _ = diagonalize_symm m_Hmo in
gemm m_X m_C'
in
match guess with
| Guess.Hcore m_H -> c_of_h m_H
| Guess.Huckel m_H -> c_of_h m_H
| Guess.Matrix m_C -> m_C
in
(* A single SCF iteration *)
let scf_iteration_rhf data =
let nSCF = data.iteration + 1
and m_C = of_some data.coefficients
and m_P_prev = data.density
and fock_prev = data.fock
and diis =
match data.diis with
| Some diis -> diis
| None -> DIIS.make ()
and threshold =
match data.error with
| Some error -> error
| None -> threshold_SCF *. 2.
in
(* Density matrix over nocc occupied MOs *)
let m_P =
gemm ~alpha:2. ~transb:`T ~k:nocc m_C m_C
in
(* Fock matrix in AO basis *)
let fock =
match fock_prev, m_P_prev, threshold > 100. *. threshold_SCF with
| Some fock_prev, Some m_P_prev, true ->
let threshold = 1.e-8 in
Fock.make_rhf ~density:(Mat.sub m_P m_P_prev) ~threshold ao_basis
|> Fock.add fock_prev
| _ -> Fock.make_rhf ~density:m_P ao_basis
in
let m_F0, m_Hc, m_J, m_K =
let x = fock in
Fock.(fock x, core x, coulomb x, exchange x)
in
(* Add level shift in AO basis *)
let m_F =
let m_SC =
gemm m_S m_C
in
gemm m_SC (gemm m_LSmo m_SC ~transb:`T)
|> Mat.add m_F0
in
(* Fock matrix in orthogonal basis *)
let m_F_ortho =
xt_o_x m_F m_X
in
let error_fock =
let fps =
gemm m_F (gemm m_P m_S)
and spf =
gemm m_S (gemm m_P m_F)
in
xt_o_x (Mat.sub fps spf) m_X
in
let diis =
DIIS.append ~p:(Mat.as_vec m_F_ortho) ~e:(Mat.as_vec error_fock) diis
in
let m_F_diis =
let x =
Bigarray.genarray_of_array1 (DIIS.next diis)
in
Bigarray.reshape_2 x (Mat.dim1 m_F_ortho) (Mat.dim2 m_F_ortho)
in
(* MOs in orthogonal MO basis *)
let m_C', _ =
diagonalize_symm m_F_diis
in
(* Re-compute eigenvalues to remove level-shift *)
let eigenvalues =
let m_F_ortho =
xt_o_x m_F0 m_X
in
xt_o_x m_F_ortho m_C'
|> Mat.copy_diag
in
(* MOs in AO basis *)
let m_C =
gemm m_X m_C'
in
(* Hartree-Fock energy *)
let energy =
nuclear_repulsion +. 0.5 *.
Mat.gemm_trace m_P (Mat.add m_Hc m_F)
in
(* Convergence criterion *)
let error =
error_fock
|> Mat.as_vec
|> amax
|> abs_float
in
{ empty with
iteration = nSCF ;
eigenvalues = Some eigenvalues ;
coefficients = Some m_C ;
error = Some error ;
diis = Some diis ;
energy = Some energy ;
density = Some m_P ;
fock = Some fock ;
}
in
let scf_iteration_rohf data =
let nSCF = data.iteration + 1
and m_C = of_some data.coefficients
and m_P_a_prev = data.density_a
and m_P_b_prev = data.density_b
and fock_a_prev = data.fock_a
and fock_b_prev = data.fock_b
and diis =
match data.diis with
| Some diis -> diis
| None -> DIIS.make ()
and threshold =
match data.error with
| Some error -> error
| None -> threshold_SCF *. 2.
in
(* Density matrix *)
let m_P_a =
gemm ~alpha:1. ~transb:`T ~k:n_alfa m_C m_C
in
let m_P_b =
gemm ~alpha:1. ~transb:`T ~k:n_beta m_C m_C
in
let m_P =
Mat.add m_P_a m_P_b
in
(* Fock matrix in AO basis *)
let fock_a =
match fock_a_prev, threshold > 100. *. threshold_SCF with
| Some fock_a_prev, true ->
let threshold = 1.e-8 in
Fock.make_uhf ~density_same:(Mat.sub m_P_a @@ of_some m_P_a_prev) ~density_other:(Mat.sub m_P_b @@ of_some m_P_b_prev) ~threshold ao_basis
|> Fock.add fock_a_prev
| _ -> Fock.make_uhf ~density_same:m_P_a ~density_other:m_P_b ao_basis
in
let fock_b =
match fock_b_prev, threshold > 100. *. threshold_SCF with
| Some fock_b_prev, true ->
let threshold = 1.e-8 in
Fock.make_uhf ~density_same:(Mat.sub m_P_b @@ of_some m_P_b_prev) ~density_other:(Mat.sub m_P_a @@ of_some m_P_a_prev) ~threshold ao_basis
|> Fock.add fock_b_prev
| _ -> Fock.make_uhf ~density_same:m_P_b ~density_other:m_P_a ao_basis
in
let m_F_a, m_Hc_a, m_J_a, m_K_a =
let x = fock_a in
Fock.(fock x, core x, coulomb x, exchange x)
in
let m_F_b, m_Hc_b, m_J_b, m_K_b =
let x = fock_b in
Fock.(fock x, core x, coulomb x, exchange x)
in
let m_F_mo_a =
xt_o_x ~o:m_F_a ~x:m_C
in
let m_F_mo_b =
xt_o_x ~o:m_F_b ~x:m_C
in
let m_F_mo =
let space k =
if k <= n_beta then
`Core
else if k <= n_alfa then
`Active
else
`Virtual
in
Array.init (Mat.dim2 m_F_mo_a) (fun i ->
let i = i+1 in
Array.init (Mat.dim1 m_F_mo_a) (fun j ->
let j = j+1 in
match (space i), (space j) with
| `Core , `Core ->
0.5 *. (m_F_mo_a.{i,j} +. m_F_mo_b.{i,j}) -.
(m_F_mo_b.{i,j} -. m_F_mo_a.{i,j})
| `Active , `Core
| `Core , `Active ->
m_F_mo_b.{i,j}
| `Core , `Virtual
| `Virtual , `Core
| `Active , `Active ->
0.5 *. (m_F_mo_a.{i,j} +. m_F_mo_b.{i,j})
| `Virtual , `Active
| `Active , `Virtual ->
m_F_mo_a.{i,j}
| `Virtual , `Virtual ->
0.5 *. (m_F_mo_a.{i,j} +. m_F_mo_b.{i,j}) +.
(m_F_mo_b.{i,j} -. m_F_mo_a.{i,j})
) )
|> Mat.of_array
in
let m_SC =
gemm m_S m_C
in
let m_F0 =
x_o_xt ~x:m_SC ~o:m_F_mo
in
(* Add level shift in AO basis *)
let m_F =
x_o_xt ~x:m_SC ~o:m_LSmo
|> Mat.add m_F0
in
(* Fock matrix in orthogonal basis *)
let m_F_ortho =
xt_o_x m_F m_X
in
let error_fock =
let fps =
gemm m_F (gemm m_P m_S)
and spf =
gemm m_S (gemm m_P m_F)
in
xt_o_x (Mat.sub fps spf) m_X
in
let diis =
DIIS.append ~p:(Mat.as_vec m_F_ortho) ~e:(Mat.as_vec error_fock) diis
in
let m_F_diis =
let x =
Bigarray.genarray_of_array1 (DIIS.next diis)
in
Bigarray.reshape_2 x (Mat.dim1 m_F_ortho) (Mat.dim2 m_F_ortho)
in
(* MOs in orthogonal MO basis *)
let m_C', eigenvalues =
diagonalize_symm m_F_diis
in
(* Re-compute eigenvalues to remove level-shift *)
let eigenvalues =
let m_F_ortho =
xt_o_x m_F0 m_X
in
xt_o_x m_F_ortho m_C'
|> Mat.copy_diag
in
(* MOs in AO basis *)
let m_C =
gemm m_X m_C'
in
(* Hartree-Fock energy *)
let energy =
nuclear_repulsion +. 0.5 *. ( Mat.gemm_trace m_P_a (Mat.add m_Hc_a m_F_a) +.
Mat.gemm_trace m_P_b (Mat.add m_Hc_b m_F_b) )
in
(* Convergence criterion *)
let error =
error_fock
|> Mat.as_vec
|> amax
|> abs_float
in
{ empty with
iteration = nSCF ;
eigenvalues = Some eigenvalues ;
coefficients = Some m_C ;
error = Some error ;
diis = Some diis ;
energy = Some energy ;
density_a = Some m_P_a ;
density_b = Some m_P_b ;
fock_a = Some fock_a ;
fock_b = Some fock_b ;
}
in
let scf_iteration data =
match kind with
| RHF -> scf_iteration_rhf data
| ROHF -> scf_iteration_rohf data
| _ -> failwith "Not implemented"
in
let array_data =
let storage =
Array.make max_scf None
in
let rec iteration = function
| 0 -> Some (scf_iteration { empty with coefficients = Some m_C })
| n -> begin
match storage.(n) with
| Some result -> Some result
| None ->
begin
let data = iteration (n-1) in
match data with
| None -> None
| Some data ->
begin
(** Check convergence *)
let converged, error =
match data.error with
| None -> false, 0.
| Some error -> (data.iteration = max_scf || error < threshold_SCF), error
in
if converged then
None
else
begin
storage.(n-1) <- Some { empty with
iteration = data.iteration;
energy = data.energy ;
eigenvalues = data.eigenvalues ;
error = data.error ;
};
storage.(n) <- Some (scf_iteration data);
storage.(n);
end
end
end
end
in
Array.init max_scf (fun i -> lazy (iteration i))
in
{
kind;
simulation;
guess ;
data = array_data;
nocc;
}
let linewidth = 60
let pp_iterations ppf t =
Format.fprintf ppf "@[%4s%s@]@." "" (Printing.line linewidth);
Format.fprintf ppf "@[%4s@[%5s@]@,@[%16s@]@,@[%16s@]@,@[%11s@]@]@."
"" "#" "HF energy " "Convergence" "HOMO-LUMO";
Format.fprintf ppf "@[%4s%s@]@." "" (Printing.line linewidth);
let nocc = nocc t in
Array.iter (fun data ->
let data = Lazy.force data in
match data with
| None -> ()
| Some data ->
let e = of_some data.eigenvalues in
let gap = e.{nocc+1} -. e.{nocc} in
begin
Format.fprintf ppf "@[%4s@[%5d@]@,@[%16.8f@]@,@[%16.4e@]@,@[%11.4f@]@]@." ""
(data.iteration) (of_some data.energy) (of_some data.error) gap;
end
) t.data;
Format.fprintf ppf "@[%4s%s@]@." "" (Printing.line linewidth)
let pp_summary ppf t =
let print text value =
Format.fprintf ppf "@[@[%30s@]@,@[%16.10f@]@]@;" text value;
and line () =
Format.fprintf ppf "@[ %s @]@;" (Printing.line (linewidth-4));
in
let ha_to_ev = Constants.ha_to_ev in
let e = eigenvalues t in
Format.fprintf ppf "@[%s@]@;" (Printing.line ~c:'=' linewidth);
Format.fprintf ppf "@[<v>";
print "One-electron energy" (kin_energy t +. eN_energy t) ;
print "Kinetic" (kin_energy t) ;
print "Potential" (eN_energy t) ;
line () ;
print "Two-electron energy" (coulomb_energy t +. exchange_energy t) ;
print "Coulomb" (coulomb_energy t) ;
print "Exchange" (exchange_energy t) ;
line ();
print "HF HOMO" (ha_to_ev *. e.{nocc t});
print "HF LUMO" (ha_to_ev *. e.{nocc t + 1});
print "HF LUMO-LUMO" (ha_to_ev *. (e.{nocc t + 1} -. e.{nocc t }));
line ();
print "Electronic energy" (energy t -. nuclear_repulsion t) ;
print "Nuclear repulsion" (nuclear_repulsion t) ;
print "Hartree-Fock energy" (energy t) ;
Format.fprintf ppf "@]";
Format.fprintf ppf "@[%s@]@;" (Printing.line ~c:'=' linewidth)
let pp_hf ppf t =
Format.fprintf ppf "@.@[%s@]@." (Printing.line ~c:'=' 70);
Format.fprintf ppf "@[%34s %-34s@]@." (match t.kind with
| UHF -> "Unrestricted"
| RHF -> "Restricted"
| ROHF -> "Restricted Open-shell") "Hartree-Fock";
Format.fprintf ppf "@[%s@]@.@." (Printing.line ~c:'=' 70);
Format.fprintf ppf "@[%a@]@." pp_iterations t;
Format.fprintf ppf "@[<v 4>@;%a@]@." pp_summary t