10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2024-11-13 01:23:41 +01:00
QCaml/Utils/Util.ml
2018-02-24 23:57:38 +01:00

176 lines
4.1 KiB
OCaml

(** All utilities which should be included in all source files are defined here *)
(** {1 Functions from libm} *)
open Constants
open Lacaml.D
let factmax = 150
external erf_float : float -> float = "erf_float_bytecode" "erf_float"
[@@unboxed] [@@noalloc]
external erfc_float : float -> float = "erfc_float_bytecode" "erfc_float"
[@@unboxed] [@@noalloc]
external gamma_float : float -> float = "gamma_float_bytecode" "gamma_float"
[@@unboxed] [@@noalloc]
(* Incomplete gamma function : Int_0^x exp(-t) t^(a-1) dt
p: 1 / Gamma(a) * Int_0^x exp(-t) t^(a-1) dt
q: 1 / Gamma(a) * Int_x^inf exp(-t) t^(a-1) dt
reference - Haruhiko Okumura: C-gengo niyoru saishin algorithm jiten
(New Algorithm handbook in C language) (Gijyutsu hyouron
sha, Tokyo, 1991) p.227 [in Japanese] *)
let incomplete_gamma ~alpha x =
let a = alpha in
let a_inv = 1./. a in
let gf = gamma_float alpha in
let loggamma_a = log gf in
let rec p_gamma x =
if x >= 1. +. a then 1. -. q_gamma x
else if x = 0. then 0.
else
let rec pg_loop prev res term k =
if k > 1000. then failwith "p_gamma did not converge."
else if prev = res then res
else
let term = term *. x /. (a +. k) in
pg_loop res (res +. term) term (k +. 1.)
in
let r0 = exp (a *. log x -. x -. loggamma_a) *. a_inv in
pg_loop min_float r0 r0 1.
and q_gamma x =
if x < 1. +. a then 1. -. p_gamma x
else
let rec qg_loop prev res la lb w k =
if k > 1000. then failwith "q_gamma did not converge."
else if prev = res then res
else
let k_inv = 1. /. k in
let kma = (k -. 1. -. a) *. k_inv in
let la, lb =
lb, kma *. (lb -. la) +. (k +. x) *. lb *. k_inv
in
let w = w *. kma in
let prev, res = res, res +. w /. (la *. lb) in
qg_loop prev res la lb w (k +. 1.)
in
let w = exp (a *. log x -. x -. loggamma_a) in
let lb = (1. +. x -. a) in
qg_loop min_float (w /. lb) 1. lb w 2.0
in
gf *. p_gamma x
let fact_memo =
let rec aux accu_l accu = function
| 0 -> aux [1.] 1. 1
| i when (i = factmax) ->
let x = (float_of_int factmax) *. accu in
List.rev (x::accu_l)
| i -> let x = (float_of_int i) *. accu in
aux (x::accu_l) x (i+1)
in
aux [] 0. 0
|> Array.of_list
let fact = function
| i when (i < 0) ->
raise (Invalid_argument "Argument of factorial should be non-negative")
| i when (i > 150) ->
raise (Invalid_argument "Result of factorial is infinite")
| i -> fact_memo.(i)
let rec pow a = function
| 0 -> 1.
| 1 -> a
| 2 -> a *. a
| 3 -> a *. a *. a
| -1 -> 1. /. a
| n when n > 0 ->
let b = pow a (n / 2) in
b *. b *. (if n mod 2 = 0 then 1. else a)
| n when n < 0 -> pow (1./.a) (-n)
| _ -> assert false
let chop f g =
if (abs_float f) < Constants.epsilon then 0.
else f *. (g ())
(** Generalized Boys function.
maxm : Maximum total angular momentum
*)
let boys_function ~maxm t =
match maxm with
| 0 ->
begin
if t = 0. then [| 1. |] else
let sq_t = sqrt t in
[| (sq_pi_over_two /. sq_t) *. erf_float sq_t |]
end
| _ ->
begin
let result =
Array.init (maxm+1) (fun m -> 1. /. float_of_int (2*m+1))
in
if t <> 0. then
begin
let fmax =
let t_inv = sqrt (1. /. t) in
let n = float_of_int maxm in
let dm = 0.5 +. n in
let f = (pow t_inv (maxm+maxm+1) ) in
(incomplete_gamma dm t) *. 0.5 *. f
in
let emt = exp (-. t) in
result.(maxm) <- fmax;
for n=maxm-1 downto 0 do
result.(n) <- ( (t+.t) *. result.(n+1) +. emt) *. result.(n)
done
end;
result
end
let array_sum a =
Array.fold_left ( +. ) 0. a
let array_product a =
Array.fold_left ( *. ) 0. a
let diagonalize_symm h =
let v = lacpy h in
let w = Vec.create (Mat.dim1 h) in
let result =
syevd ~vectors:true ~w v
in
v, result
let xt_o_x ~o ~x =
gemm o x
|> gemm ~transa:`T x