mirror of
https://gitlab.com/scemama/QCaml.git
synced 2025-01-03 10:05:40 +01:00
368 lines
10 KiB
OCaml
368 lines
10 KiB
OCaml
(** Types *)
|
|
open Linear_algebra
|
|
|
|
type localization_kind =
|
|
| Edmiston
|
|
| Boys
|
|
|
|
type mo = Mo_dim.t
|
|
type ao = Ao.Ao_dim.t
|
|
type loc
|
|
|
|
type localization_data =
|
|
{
|
|
coefficients : (ao, loc) Matrix.t ;
|
|
kappa : (loc, loc) Matrix.t ;
|
|
scaling : float ;
|
|
loc_value : float ;
|
|
convergence : float ;
|
|
iteration : int ;
|
|
}
|
|
|
|
type t =
|
|
{
|
|
kind : localization_kind ;
|
|
mo_basis : Basis.t ;
|
|
data : localization_data option lazy_t array ;
|
|
selected_mos : int list ;
|
|
}
|
|
|
|
open Common
|
|
|
|
|
|
(** Edmiston-Rudenberg *)
|
|
|
|
let kappa_edmiston in_basis m_C =
|
|
let ao_basis =
|
|
Basis.simulation in_basis
|
|
|> Simulation.ao_basis
|
|
in
|
|
|
|
let ee_ints = Ao.Basis.ee_ints ao_basis in
|
|
let n_ao = Ao.Basis.size ao_basis in
|
|
|
|
let n_mo = Matrix.dim2 m_C in
|
|
|
|
(* Temp arrays for integral transformation *)
|
|
let m_pqr =
|
|
Bigarray.(Array3.create Float64 fortran_layout n_ao n_ao n_ao)
|
|
in
|
|
let m_qr_i = Matrix.create (n_ao*n_ao) n_mo in
|
|
let m_ri_j = Matrix.create (n_ao*n_mo) n_mo in
|
|
let m_ij_k = Matrix.create (n_mo*n_mo) n_mo in
|
|
|
|
|
|
let m_a12 = Bigarray.(Array2.create Float64 fortran_layout n_mo n_mo) in
|
|
let m_b12 = Bigarray.(Array2.create Float64 fortran_layout n_mo n_mo) in
|
|
Bigarray.Array2.fill m_b12 0.;
|
|
Bigarray.Array2.fill m_a12 0.;
|
|
let v_d =
|
|
Vector.init n_mo (fun _ -> 0.)
|
|
|> Vector.to_bigarray_inplace
|
|
in
|
|
|
|
Array.iter (fun s ->
|
|
|
|
Array.iter (fun r ->
|
|
Array.iter (fun q ->
|
|
Array.iter (fun p ->
|
|
m_pqr.{p,q,r} <- Four_idx_storage.get_phys ee_ints p q r s
|
|
) (Util.array_range 1 n_ao)
|
|
) (Util.array_range 1 n_ao)
|
|
) (Util.array_range 1 n_ao);
|
|
|
|
let m_p_qr =
|
|
Bigarray.reshape (Bigarray.genarray_of_array3 m_pqr) [| n_ao ; n_ao*n_ao |]
|
|
|> Bigarray.array2_of_genarray
|
|
|> Matrix.of_bigarray_inplace
|
|
in
|
|
|
|
(* (qr,i) = <i r|q s> = \sum_p <p r | q s> C_{pi} *)
|
|
Matrix.gemm_tn_inplace ~c:m_qr_i m_p_qr m_C;
|
|
|
|
let m_q_ri =
|
|
let x = Matrix.to_bigarray_inplace m_qr_i |> Bigarray.genarray_of_array2 in
|
|
Bigarray.reshape_2 x n_ao (n_ao*n_mo) |> Matrix.of_bigarray_inplace
|
|
in
|
|
|
|
(* (ri,j) = <i r | j s> = \sum_q <i r | q s> C_{qj} *)
|
|
Matrix.gemm_tn_inplace ~c:m_ri_j m_q_ri m_C;
|
|
|
|
let m_r_ij =
|
|
let x = Matrix.to_bigarray_inplace m_ri_j |> Bigarray.genarray_of_array2 in
|
|
Bigarray.reshape_2 x n_ao (n_mo*n_mo) |> Matrix.of_bigarray_inplace
|
|
in
|
|
|
|
(* (ij,k) = <i k | j s> = \sum_r <i r | j s> C_{rk} *)
|
|
Matrix.gemm_tn_inplace ~c:m_ij_k m_r_ij m_C;
|
|
|
|
let m_ijk =
|
|
let x = Matrix.to_bigarray_inplace m_ij_k |> Bigarray.genarray_of_array2 in
|
|
Bigarray.reshape x [| n_mo ; n_mo ; n_mo |]
|
|
|> Bigarray.array3_of_genarray
|
|
in
|
|
|
|
let m_Cx = Matrix.to_bigarray_inplace m_C in
|
|
Array.iter (fun j ->
|
|
Array.iter (fun i ->
|
|
m_b12.{i,j} <- m_b12.{i,j} +. m_Cx.{s,j} *. (m_ijk.{i,i,i} -. m_ijk.{j,i,j});
|
|
m_a12.{i,j} <- m_a12.{i,j} +. m_ijk.{i,i,j} *. m_Cx.{s,j} -.
|
|
0.25 *. ( (m_ijk.{i,i,i} -. m_ijk.{j,i,j}) *. m_Cx.{s,i} +.
|
|
(m_ijk.{j,j,j} -. m_ijk.{i,j,i}) *. m_Cx.{s,j})
|
|
) (Util.array_range 1 n_mo);
|
|
v_d.{j} <- v_d.{j} +. m_ijk.{j,j,j} *. m_Cx.{s,j}
|
|
) (Util.array_range 1 n_mo)
|
|
|
|
) (Util.array_range 1 n_ao);
|
|
|
|
let f i j =
|
|
if i=j then
|
|
0.
|
|
else
|
|
begin
|
|
let x = 1./. sqrt (m_b12.{i,j} *. m_b12.{i,j} +. m_a12.{i,j} *. m_a12.{i,j} ) in
|
|
if asin (m_b12.{i,j} /. x) > 0. then
|
|
0.25 *. acos( -. m_a12.{i,j} *. x)
|
|
else
|
|
-. 0.25 *. acos( -. m_a12.{i,j} *. x )
|
|
end
|
|
in
|
|
(
|
|
Matrix.init_cols n_mo n_mo ( fun i j -> if i<=j then f i j else -. (f j i) ),
|
|
Vector.sum (Vector.of_bigarray_inplace v_d)
|
|
)
|
|
|
|
|
|
(** Boys *)
|
|
|
|
let kappa_boys in_basis =
|
|
let ao_basis =
|
|
Basis.simulation in_basis
|
|
|> Simulation.ao_basis
|
|
in
|
|
let multipole = Ao.Basis.multipole ao_basis in
|
|
fun m_C ->
|
|
let n_mo = Matrix.dim2 m_C in
|
|
|
|
let phi_x_phi = Matrix.xt_o_x ~x:m_C ~o:(multipole "x") in
|
|
let phi_y_phi = Matrix.xt_o_x ~x:m_C ~o:(multipole "y") in
|
|
let phi_z_phi = Matrix.xt_o_x ~x:m_C ~o:(multipole "z") in
|
|
|
|
let m_b12 =
|
|
let g x i j =
|
|
let x_ii = x%:(i,i) in
|
|
let x_jj = x%:(j,j) in
|
|
let x_ij = x%:(i,j) in
|
|
(x_ii -. x_jj) *. x_ij
|
|
in
|
|
Matrix.init_cols n_mo n_mo (fun i j ->
|
|
let x =
|
|
(g phi_x_phi i j) +. (g phi_y_phi i j) +. (g phi_z_phi i j)
|
|
in
|
|
if (abs_float x > 1.e-15) then x else 0.
|
|
)
|
|
in
|
|
|
|
let m_a12 =
|
|
let g x i j =
|
|
let x_ii = x%:(i,i) in
|
|
let x_jj = x%:(j,j) in
|
|
let x_ij = x%:(i,j) in
|
|
let y = x_ii -. x_jj in
|
|
(x_ij *. x_ij) -. 0.25 *. y *. y
|
|
in
|
|
Matrix.init_cols n_mo n_mo (fun i j ->
|
|
let x =
|
|
(g phi_x_phi i j) +. (g phi_y_phi i j) +. (g phi_z_phi i j)
|
|
in
|
|
if (abs_float x > 1.e-15) then x else 0.
|
|
)
|
|
in
|
|
|
|
let f i j =
|
|
let pi = Constants.pi in
|
|
if i=j then
|
|
0.
|
|
else
|
|
let x = atan2 (m_b12%:(i,j)) (m_a12%:(i,j)) in
|
|
if x >= 0. then
|
|
0.25 *. (pi -. x)
|
|
else
|
|
-. 0.25 *. ( pi +. x)
|
|
in
|
|
(
|
|
Matrix.init_cols n_mo n_mo ( fun i j -> if i>j then f i j else -. (f j i) ),
|
|
let r2 x y z = x*.x +. y*.y +. z*.z in
|
|
Vector.init n_mo ( fun i ->
|
|
r2 (phi_x_phi%:(i,i)) (phi_y_phi%:(i,i)) (phi_z_phi%:(i,i)))
|
|
|> Vector.sum
|
|
)
|
|
|
|
|
|
|
|
(** Access *)
|
|
|
|
let kind t = t.kind
|
|
let simulation t = Basis.simulation t.mo_basis
|
|
let selected_mos t = t.selected_mos
|
|
|
|
let kappa ~kind =
|
|
match kind with
|
|
| Edmiston -> kappa_edmiston
|
|
| Boys -> kappa_boys
|
|
|
|
|
|
let n_iterations t =
|
|
Array.fold_left (fun accu x ->
|
|
match Lazy.force x with
|
|
| Some _ -> accu + 1
|
|
| None -> accu
|
|
) 0 t.data
|
|
|
|
let last_iteration t =
|
|
Util.of_some @@ Lazy.force t.data.(n_iterations t - 1)
|
|
|
|
(*
|
|
let ao_basis t = Simulation.ao_basis (simulation t)
|
|
*)
|
|
|
|
|
|
let make ~kind ?(max_iter=500) ?(convergence=1.e-6) mo_basis selected_mos =
|
|
|
|
let kappa_loc = kappa ~kind mo_basis in
|
|
|
|
let mo_array = Matrix.to_col_vecs (Basis.mo_coef mo_basis) in
|
|
let mos_vec_list = List.map (fun i -> mo_array.(i-1)) selected_mos in
|
|
let x: (ao,loc) Matrix.t =
|
|
Matrix.of_col_vecs_list mos_vec_list
|
|
in
|
|
|
|
let next_coef kappa x =
|
|
let r = Matrix.exponential_antisymmetric kappa in
|
|
let m_C = Matrix.gemm_nt x r in
|
|
m_C
|
|
in
|
|
|
|
let data_initial =
|
|
let iteration = 0
|
|
and scaling = 0.1
|
|
in
|
|
let kappa, loc_value = kappa_loc x in
|
|
let convergence = abs_float (Matrix.amax kappa) in
|
|
let kappa = Matrix.scale scaling kappa in
|
|
let coefficients = next_coef kappa x in
|
|
{ coefficients ; kappa ; scaling ; convergence ; loc_value ; iteration }
|
|
in
|
|
|
|
let iteration data =
|
|
let iteration = data.iteration+1 in
|
|
let new_kappa, new_loc_value = kappa_loc data.coefficients in
|
|
let new_convergence = abs_float (Matrix.amax new_kappa) in
|
|
let accept =
|
|
new_loc_value >= data.loc_value*.0.98
|
|
in
|
|
if accept then
|
|
let coefficients = next_coef new_kappa data.coefficients in
|
|
let scaling = min 1. (data.scaling *. 1.1) in
|
|
let kappa = Matrix.scale scaling new_kappa in
|
|
let convergence = new_convergence in
|
|
let loc_value = new_loc_value in
|
|
{ coefficients ; kappa ; scaling ; convergence ; loc_value ; iteration }
|
|
else
|
|
let scaling =
|
|
data.scaling *. 0.5
|
|
in
|
|
{ data with scaling ; iteration }
|
|
in
|
|
|
|
let array_data =
|
|
|
|
let storage =
|
|
Array.make max_iter None
|
|
in
|
|
|
|
let rec loop = function
|
|
| 0 -> Some (iteration data_initial)
|
|
| n -> begin
|
|
match storage.(n) with
|
|
| Some result -> Some result
|
|
| None -> begin
|
|
let data = loop (n-1) in
|
|
match data with
|
|
| None -> None
|
|
| Some data -> begin
|
|
(* Check convergence *)
|
|
let converged =
|
|
data.convergence < convergence
|
|
in
|
|
if converged then
|
|
None
|
|
else
|
|
begin
|
|
storage.(n-1) <- Some data ;
|
|
storage.(n) <- Some (iteration data);
|
|
storage.(n)
|
|
end
|
|
end
|
|
end
|
|
end
|
|
in
|
|
Array.init max_iter (fun i -> lazy (loop i))
|
|
in
|
|
{ kind ; mo_basis ; data = array_data ; selected_mos }
|
|
|
|
|
|
|
|
let to_basis t =
|
|
let mo_basis = t.mo_basis in
|
|
let simulation = Basis.simulation mo_basis in
|
|
let mo_occupation = Basis.mo_occupation mo_basis in
|
|
|
|
let data = last_iteration t in
|
|
|
|
let mo_coef_array = Matrix.to_col_vecs (Basis.mo_coef mo_basis) in
|
|
let new_mos =
|
|
Matrix.to_col_vecs data.coefficients
|
|
in
|
|
selected_mos t
|
|
|> List.iteri (fun i j -> mo_coef_array.(j-1) <- new_mos.(i)) ;
|
|
let mo_coef = Matrix.of_col_vecs mo_coef_array in
|
|
Basis.make ~simulation ~mo_type:(Localized "Boys") ~mo_occupation ~mo_coef ()
|
|
|
|
|
|
(** Printers *)
|
|
|
|
let linewidth = 60
|
|
|
|
let pp_iterations ppf t =
|
|
let line = (String.make linewidth '-') in
|
|
Format.fprintf ppf "@[%4s%s@]@." "" line;
|
|
Format.fprintf ppf "@[%4s@[%5s@]@,@[%16s@]@,@[%16s@]@,@[%11s@]@]@."
|
|
"" "#" "Localization " "Convergence" "Scaling";
|
|
Format.fprintf ppf "@[%4s%s@]@." "" line;
|
|
Array.iter (fun data ->
|
|
let data = Lazy.force data in
|
|
match data with
|
|
| None -> ()
|
|
| Some data ->
|
|
let loc = data.loc_value in
|
|
let conv = data.convergence in
|
|
let scaling = data.scaling in
|
|
let iteration = data.iteration in
|
|
begin
|
|
Format.fprintf ppf "@[%4s@[%5d@]@,@[%16.8f@]@,@[%16.4e@]@,@[%11.4f@]@]@." ""
|
|
iteration loc conv scaling ;
|
|
end
|
|
) t.data;
|
|
Format.fprintf ppf "@[%4s%s@]@." "" line
|
|
|
|
|
|
let pp ppf t =
|
|
Format.fprintf ppf "@.@[%s@]@." (String.make 70 '=');
|
|
Format.fprintf ppf "@[%34s %-34s@]@." (match t.kind with
|
|
| Boys -> "Boys"
|
|
| Edmiston -> "Edmiston-Ruedenberg"
|
|
) "MO Localization";
|
|
Format.fprintf ppf "@[%s@]@.@." (String.make 70 '=');
|
|
Format.fprintf ppf "@[%a@]@." pp_iterations t;
|