mirror of
https://gitlab.com/scemama/QCaml.git
synced 2025-01-03 10:05:40 +01:00
6.3 KiB
6.3 KiB
Integrals
#+PROPERTY
In this example, we write a program that reads the geometry of a
molecule in xyz
format and a Gaussian atomic basis set in GAMESS
format. The output is written in a trexio file.
Header
module Command_line = Qcaml.Common.Command_line
module Util = Qcaml.Common.Util
open Qcaml.Linear_algebra
let () =
Command-line arguments
We use the Command_line
module to define the following possible
arguments:
-b --basis
: The name of the file containing the basis set-x --xyz
: The name of the file containing the atomic coordinates-u --range-separation
: The value of $\mu$, the range-separation parameter in range-separated DFT. If this option is not present, no output file will be generated for the range-separated integrals.
Definition
let open Command_line in
begin
set_header_doc (Sys.argv.(0));
set_description_doc "Computes the one- and two-electron integrals on the Gaussian atomic basis set.";
set_specs
[ { short='b' ; long="basis" ; opt=Mandatory;
arg=With_arg "<string>";
doc="Name of the file containing the basis set"; } ;
{ short='x' ; long="xyz" ; opt=Mandatory;
arg=With_arg "<string>";
doc="Name of the file containing the nuclear coordinates in xyz format"; } ;
{ short='u' ; long="range-separation" ; opt=Optional;
arg=With_arg "<float>";
doc="Range-separation parameter."; } ;
]
end;
Interpretation
let basis_file = Util.of_some @@ Command_line.get "basis" in
let nuclei_file = Util.of_some @@ Command_line.get "xyz" in
let range_separation =
match Command_line.get "range-separation" with
| None -> None
| Some mu -> Some (float_of_string mu)
in
let operators =
match range_separation with
| None -> []
| Some mu -> [ Qcaml.Operators.Operator.of_range_separation mu ]
in
Computation
We first read the xyz
file to create a molecule:
let nuclei =
Qcaml.Particles.Nuclei.of_xyz_file nuclei_file
in
Then we create an Gaussian AO basis using the atomic coordinates,
and we optionally introduce the range-separation parameter via the
operators
:
let ao_basis =
Qcaml.Ao.Basis.of_nuclei_and_basis_filename ~kind:`Gaussian
~operators ~cartesian:true ~nuclei basis_file
in
We compute the required one-electron integrals:
let overlap = Qcaml.Ao.Basis.overlap ao_basis in
let eN_ints = Qcaml.Ao.Basis.eN_ints ao_basis in
let kin_ints = Qcaml.Ao.Basis.kin_ints ao_basis in
let multipole = Qcaml.Ao.Basis.multipole ao_basis in
let x_mat = multipole "x" in
let y_mat = multipole "y" in
let z_mat = multipole "z" in
and the two-electron integrals (1/r and long range):
let ee_ints = Qcaml.Ao.Basis.ee_ints ao_basis in
let lr_ints =
match range_separation with
| Some _mu -> Some (Qcaml.Ao.Basis.ee_lr_ints ao_basis)
| None -> None
in
Output
We write the one-electron integrals:
Matrix.to_file ~filename:"overlap.dat" ~sym:true overlap;
Matrix.to_file ~filename:"eN.dat" ~sym:true eN_ints;
Matrix.to_file ~filename:"kinetic.dat" ~sym:true kin_ints;
Matrix.to_file ~filename:"x.dat" ~sym:true x_mat;
Matrix.to_file ~filename:"y.dat" ~sym:true y_mat;
Matrix.to_file ~filename:"z.dat" ~sym:true z_mat;
and the the two-electron integrals:
Four_idx_storage.to_file ~filename:"eri.dat" ee_ints;
match lr_ints with
| Some integrals -> Four_idx_storage.to_file ~filename:"eri_lr.dat" integrals;
| None -> ()