mirror of
https://gitlab.com/scemama/QCaml.git
synced 2025-01-05 10:58:47 +01:00
708 lines
18 KiB
OCaml
708 lines
18 KiB
OCaml
open Lacaml.D
|
|
open Util
|
|
open Constants
|
|
|
|
|
|
type hartree_fock_data =
|
|
{
|
|
iteration : int ;
|
|
coefficients : Mat.t option ;
|
|
eigenvalues : Vec.t option ;
|
|
error : float option ;
|
|
diis : DIIS.t option ;
|
|
energy : float option ;
|
|
density : Mat.t option ;
|
|
density_a : Mat.t option ;
|
|
density_b : Mat.t option ;
|
|
fock : Fock.t option ;
|
|
fock_a : Fock.t option ;
|
|
fock_b : Fock.t option ;
|
|
}
|
|
|
|
type hartree_fock_kind =
|
|
| RHF (** Restricted Hartree-Fock *)
|
|
| ROHF (** Restricted Open-shell Hartree-Fock *)
|
|
| UHF (** Unrestricted Hartree-Fock *)
|
|
|
|
type t =
|
|
{
|
|
kind : hartree_fock_kind;
|
|
simulation : Simulation.t;
|
|
guess : Guess.t;
|
|
data : hartree_fock_data option lazy_t array;
|
|
nocc : int ;
|
|
}
|
|
|
|
|
|
let empty =
|
|
{
|
|
iteration = 0 ;
|
|
coefficients = None ;
|
|
eigenvalues = None ;
|
|
error = None ;
|
|
diis = None ;
|
|
energy = None ;
|
|
density = None ;
|
|
density_a = None ;
|
|
density_b = None ;
|
|
fock = None ;
|
|
fock_a = None ;
|
|
fock_b = None ;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
module Si = Simulation
|
|
module El = Electrons
|
|
module Ao = AOBasis
|
|
module Ov = Overlap
|
|
|
|
|
|
let kind t = t.kind
|
|
let simulation t = t.simulation
|
|
let guess t = t.guess
|
|
let nocc t = t.nocc
|
|
|
|
|
|
|
|
let n_iterations t =
|
|
Array.fold_left (fun accu x ->
|
|
match Lazy.force x with
|
|
| Some x -> accu + 1
|
|
| None -> accu
|
|
) 0 t.data
|
|
|
|
|
|
let last_iteration t =
|
|
of_some @@ Lazy.force (t.data.(n_iterations t - 1))
|
|
|
|
let eigenvectors t =
|
|
let data = last_iteration t in
|
|
of_some data.coefficients
|
|
|
|
let eigenvalues t =
|
|
let data = last_iteration t in
|
|
of_some data.eigenvalues
|
|
|
|
let density t =
|
|
let data = last_iteration t in
|
|
match kind t with
|
|
| RHF -> of_some data.density
|
|
| ROHF -> Mat.add (of_some data.density_a) (of_some data.density_b)
|
|
| _ -> failwith "Not implemented"
|
|
|
|
let occupation t =
|
|
let n_alfa, n_beta =
|
|
El.n_alfa @@ Simulation.electrons @@ simulation t,
|
|
El.n_beta @@ Simulation.electrons @@ simulation t
|
|
in
|
|
match kind t with
|
|
| RHF -> Vec.init (Mat.dim2 @@ eigenvectors t) (fun i ->
|
|
if i <= nocc t then 2.0 else 0.0)
|
|
| ROHF -> Vec.init (Mat.dim2 @@ eigenvectors t) (fun i ->
|
|
if i <= n_beta then 2.0 else
|
|
if i <= n_alfa then 1.0 else
|
|
0.0)
|
|
| _ -> failwith "Not implemented"
|
|
|
|
|
|
let energy t =
|
|
let data = last_iteration t in
|
|
of_some data.energy
|
|
|
|
|
|
let nuclear_repulsion t =
|
|
Si.nuclear_repulsion (simulation t)
|
|
|
|
|
|
let ao_basis t =
|
|
Si.ao_basis (simulation t)
|
|
|
|
|
|
let kin_energy t =
|
|
let m_T =
|
|
ao_basis t
|
|
|> Ao.kin_ints
|
|
|> KinInt.matrix
|
|
in
|
|
let m_P = density t in
|
|
Mat.gemm_trace m_P m_T
|
|
|
|
|
|
let eN_energy t =
|
|
let m_V =
|
|
ao_basis t
|
|
|> Ao.eN_ints
|
|
|> NucInt.matrix
|
|
in
|
|
let m_P = density t in
|
|
Mat.gemm_trace m_P m_V
|
|
|
|
|
|
let coulomb_energy t =
|
|
let data =
|
|
last_iteration t
|
|
in
|
|
match kind t with
|
|
| RHF -> let m_P = of_some data.density in
|
|
let fock = of_some data.fock in
|
|
let m_J = Fock.coulomb fock in
|
|
0.5 *. Mat.gemm_trace m_P m_J
|
|
|
|
| ROHF -> let m_P_a = of_some data.density_a in
|
|
let m_P_b = of_some data.density_b in
|
|
let fock_a = of_some data.fock_a in
|
|
let fock_b = of_some data.fock_b in
|
|
let m_J_a = Fock.coulomb fock_a in
|
|
let m_J_b = Fock.coulomb fock_b in
|
|
0.5 *. ( (Mat.gemm_trace m_P_a m_J_a) +. (Mat.gemm_trace m_P_b m_J_b) )
|
|
|
|
| _ -> failwith "Not implemented"
|
|
|
|
|
|
let exchange_energy t =
|
|
let data =
|
|
last_iteration t
|
|
in
|
|
match kind t with
|
|
| RHF -> let m_P = of_some data.density in
|
|
let fock = of_some data.fock in
|
|
let m_K = Fock.exchange fock in
|
|
0.5 *. Mat.gemm_trace m_P m_K
|
|
|
|
| ROHF -> let m_P_a = of_some data.density_a in
|
|
let m_P_b = of_some data.density_b in
|
|
let fock_a = of_some data.fock_a in
|
|
let fock_b = of_some data.fock_b in
|
|
let m_K_a = Fock.exchange fock_a in
|
|
let m_K_b = Fock.exchange fock_b in
|
|
0.5 *. ( (Mat.gemm_trace m_P_a m_K_a) +. (Mat.gemm_trace m_P_b m_K_b) )
|
|
|
|
| _ -> failwith "Not implemented"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let make
|
|
?kind
|
|
?guess:(guess=`Huckel)
|
|
?max_scf:(max_scf=64)
|
|
?level_shift:(level_shift=0.1)
|
|
?threshold_SCF:(threshold_SCF=1.e-8)
|
|
simulation =
|
|
|
|
|
|
(* Number of occupied MOs *)
|
|
let n_alfa, n_beta =
|
|
El.n_alfa @@ Si.electrons simulation,
|
|
El.n_beta @@ Si.electrons simulation
|
|
in
|
|
|
|
let nocc = n_alfa in
|
|
|
|
let kind =
|
|
match kind with
|
|
| Some kind -> kind
|
|
| None -> if (n_alfa = n_beta) then RHF else ROHF
|
|
in
|
|
|
|
let nuclear_repulsion =
|
|
Si.nuclear_repulsion simulation
|
|
in
|
|
|
|
let ao_basis =
|
|
Si.ao_basis simulation
|
|
in
|
|
|
|
|
|
(* Orthogonalization matrix *)
|
|
let m_X =
|
|
Ao.ortho ao_basis
|
|
in
|
|
|
|
(* Overlap matrix *)
|
|
let m_S =
|
|
Ao.overlap ao_basis
|
|
|> Ov.matrix
|
|
in
|
|
|
|
(* Level shift in MO basis *)
|
|
let m_LSmo =
|
|
Array.init (Mat.dim2 m_X) (fun i ->
|
|
if i > nocc then level_shift else 0.)
|
|
|> Vec.of_array
|
|
|> Mat.of_diag
|
|
in
|
|
|
|
(* Guess coefficients *)
|
|
let guess =
|
|
Guess.make ~nocc ~guess ao_basis
|
|
in
|
|
|
|
let m_C =
|
|
let c_of_h m_H =
|
|
let m_Hmo = xt_o_x m_H m_X in
|
|
let m_C', _ = diagonalize_symm m_Hmo in
|
|
gemm m_X m_C'
|
|
in
|
|
match guess with
|
|
| Guess.Hcore m_H -> c_of_h m_H
|
|
| Guess.Huckel m_H -> c_of_h m_H
|
|
| Guess.Matrix m_C -> m_C
|
|
in
|
|
|
|
(* A single SCF iteration *)
|
|
let scf_iteration_rhf data =
|
|
|
|
let nSCF = data.iteration + 1
|
|
and m_C = of_some data.coefficients
|
|
and m_P_prev = data.density
|
|
and fock_prev = data.fock
|
|
and diis =
|
|
match data.diis with
|
|
| Some diis -> diis
|
|
| None -> DIIS.make ()
|
|
and threshold =
|
|
match data.error with
|
|
| Some error -> error
|
|
| None -> threshold_SCF *. 2.
|
|
in
|
|
|
|
(* Density matrix over nocc occupied MOs *)
|
|
let m_P =
|
|
gemm ~alpha:2. ~transb:`T ~k:nocc m_C m_C
|
|
in
|
|
|
|
(* Fock matrix in AO basis *)
|
|
let fock =
|
|
match fock_prev, m_P_prev, threshold > 100. *. threshold_SCF with
|
|
| Some fock_prev, Some m_P_prev, true ->
|
|
let threshold = 1.e-8 in
|
|
Fock.make_rhf ~density:(Mat.sub m_P m_P_prev) ~threshold ao_basis
|
|
|> Fock.add fock_prev
|
|
| _ -> Fock.make_rhf ~density:m_P ao_basis
|
|
in
|
|
|
|
let m_F0, m_Hc, m_J, m_K =
|
|
let x = fock in
|
|
Fock.(fock x, core x, coulomb x, exchange x)
|
|
in
|
|
|
|
(* Add level shift in AO basis *)
|
|
let m_F =
|
|
let m_SC =
|
|
gemm m_S m_C
|
|
in
|
|
gemm m_SC (gemm m_LSmo m_SC ~transb:`T)
|
|
|> Mat.add m_F0
|
|
in
|
|
|
|
|
|
(* Fock matrix in orthogonal basis *)
|
|
let m_F_ortho =
|
|
xt_o_x m_F m_X
|
|
in
|
|
|
|
let error_fock =
|
|
let fps =
|
|
gemm m_F (gemm m_P m_S)
|
|
and spf =
|
|
gemm m_S (gemm m_P m_F)
|
|
in
|
|
xt_o_x (Mat.sub fps spf) m_X
|
|
in
|
|
|
|
let diis =
|
|
DIIS.append ~p:(Mat.as_vec m_F_ortho) ~e:(Mat.as_vec error_fock) diis
|
|
in
|
|
|
|
let m_F_diis =
|
|
let x =
|
|
Bigarray.genarray_of_array1 (DIIS.next diis)
|
|
in
|
|
Bigarray.reshape_2 x (Mat.dim1 m_F_ortho) (Mat.dim2 m_F_ortho)
|
|
in
|
|
|
|
|
|
(* MOs in orthogonal MO basis *)
|
|
let m_C', _ =
|
|
diagonalize_symm m_F_diis
|
|
in
|
|
|
|
(* Re-compute eigenvalues to remove level-shift *)
|
|
let eigenvalues =
|
|
let m_F_ortho =
|
|
xt_o_x m_F0 m_X
|
|
in
|
|
xt_o_x m_F_ortho m_C'
|
|
|> Mat.copy_diag
|
|
in
|
|
|
|
(* MOs in AO basis *)
|
|
let m_C =
|
|
gemm m_X m_C'
|
|
in
|
|
|
|
(* Hartree-Fock energy *)
|
|
let energy =
|
|
nuclear_repulsion +. 0.5 *.
|
|
Mat.gemm_trace m_P (Mat.add m_Hc m_F)
|
|
in
|
|
|
|
(* Convergence criterion *)
|
|
let error =
|
|
error_fock
|
|
|> Mat.as_vec
|
|
|> amax
|
|
|> abs_float
|
|
in
|
|
|
|
{ empty with
|
|
iteration = nSCF ;
|
|
eigenvalues = Some eigenvalues ;
|
|
coefficients = Some m_C ;
|
|
error = Some error ;
|
|
diis = Some diis ;
|
|
energy = Some energy ;
|
|
density = Some m_P ;
|
|
fock = Some fock ;
|
|
}
|
|
|
|
in
|
|
|
|
let scf_iteration_rohf data =
|
|
|
|
let nSCF = data.iteration + 1
|
|
and m_C = of_some data.coefficients
|
|
and m_P_a_prev = data.density_a
|
|
and m_P_b_prev = data.density_b
|
|
and fock_a_prev = data.fock_a
|
|
and fock_b_prev = data.fock_b
|
|
and diis =
|
|
match data.diis with
|
|
| Some diis -> diis
|
|
| None -> DIIS.make ()
|
|
and threshold =
|
|
match data.error with
|
|
| Some error -> error
|
|
| None -> threshold_SCF *. 2.
|
|
in
|
|
|
|
(* Density matrix *)
|
|
let m_P_a =
|
|
gemm ~alpha:1. ~transb:`T ~k:n_alfa m_C m_C
|
|
in
|
|
|
|
let m_P_b =
|
|
gemm ~alpha:1. ~transb:`T ~k:n_beta m_C m_C
|
|
in
|
|
|
|
let m_P =
|
|
Mat.add m_P_a m_P_b
|
|
in
|
|
|
|
(* Fock matrix in AO basis *)
|
|
let fock_a =
|
|
match fock_a_prev, threshold > 100. *. threshold_SCF with
|
|
| Some fock_a_prev, true ->
|
|
let threshold = 1.e-8 in
|
|
Fock.make_uhf ~density_same:(Mat.sub m_P_a @@ of_some m_P_a_prev) ~density_other:(Mat.sub m_P_b @@ of_some m_P_b_prev) ~threshold ao_basis
|
|
|> Fock.add fock_a_prev
|
|
| _ -> Fock.make_uhf ~density_same:m_P_a ~density_other:m_P_b ao_basis
|
|
in
|
|
|
|
let fock_b =
|
|
match fock_b_prev, threshold > 100. *. threshold_SCF with
|
|
| Some fock_b_prev, true ->
|
|
let threshold = 1.e-8 in
|
|
Fock.make_uhf ~density_same:(Mat.sub m_P_b @@ of_some m_P_b_prev) ~density_other:(Mat.sub m_P_a @@ of_some m_P_a_prev) ~threshold ao_basis
|
|
|> Fock.add fock_b_prev
|
|
| _ -> Fock.make_uhf ~density_same:m_P_b ~density_other:m_P_a ao_basis
|
|
in
|
|
|
|
let m_F_a, m_Hc_a, m_J_a, m_K_a =
|
|
let x = fock_a in
|
|
Fock.(fock x, core x, coulomb x, exchange x)
|
|
in
|
|
|
|
let m_F_b, m_Hc_b, m_J_b, m_K_b =
|
|
let x = fock_b in
|
|
Fock.(fock x, core x, coulomb x, exchange x)
|
|
in
|
|
|
|
|
|
let m_F_mo_a =
|
|
xt_o_x ~o:m_F_a ~x:m_C
|
|
in
|
|
|
|
let m_F_mo_b =
|
|
xt_o_x ~o:m_F_b ~x:m_C
|
|
in
|
|
|
|
let m_F_mo =
|
|
let space k =
|
|
if k <= n_beta then
|
|
`Core
|
|
else if k <= n_alfa then
|
|
`Active
|
|
else
|
|
`Virtual
|
|
in
|
|
Array.init (Mat.dim2 m_F_mo_a) (fun i ->
|
|
let i = i+1 in
|
|
Array.init (Mat.dim1 m_F_mo_a) (fun j ->
|
|
let j = j+1 in
|
|
match (space i), (space j) with
|
|
| `Core , `Core ->
|
|
0.5 *. (m_F_mo_a.{i,j} +. m_F_mo_b.{i,j}) -.
|
|
(m_F_mo_b.{i,j} -. m_F_mo_a.{i,j})
|
|
|
|
| `Active , `Core
|
|
| `Core , `Active ->
|
|
m_F_mo_b.{i,j}
|
|
|
|
| `Core , `Virtual
|
|
| `Virtual , `Core
|
|
| `Active , `Active ->
|
|
0.5 *. (m_F_mo_a.{i,j} +. m_F_mo_b.{i,j})
|
|
|
|
| `Virtual , `Active
|
|
| `Active , `Virtual ->
|
|
m_F_mo_a.{i,j}
|
|
|
|
| `Virtual , `Virtual ->
|
|
0.5 *. (m_F_mo_a.{i,j} +. m_F_mo_b.{i,j}) +.
|
|
(m_F_mo_b.{i,j} -. m_F_mo_a.{i,j})
|
|
) )
|
|
|> Mat.of_array
|
|
in
|
|
|
|
let m_SC =
|
|
gemm m_S m_C
|
|
in
|
|
|
|
let m_F0 =
|
|
x_o_xt ~x:m_SC ~o:m_F_mo
|
|
in
|
|
|
|
|
|
(* Add level shift in AO basis *)
|
|
let m_F =
|
|
x_o_xt ~x:m_SC ~o:m_LSmo
|
|
|> Mat.add m_F0
|
|
in
|
|
|
|
(* Fock matrix in orthogonal basis *)
|
|
let m_F_ortho =
|
|
xt_o_x m_F m_X
|
|
in
|
|
|
|
let error_fock =
|
|
let fps =
|
|
gemm m_F (gemm m_P m_S)
|
|
and spf =
|
|
gemm m_S (gemm m_P m_F)
|
|
in
|
|
xt_o_x (Mat.sub fps spf) m_X
|
|
in
|
|
|
|
let diis =
|
|
DIIS.append ~p:(Mat.as_vec m_F_ortho) ~e:(Mat.as_vec error_fock) diis
|
|
in
|
|
|
|
let m_F_diis =
|
|
let x =
|
|
Bigarray.genarray_of_array1 (DIIS.next diis)
|
|
in
|
|
Bigarray.reshape_2 x (Mat.dim1 m_F_ortho) (Mat.dim2 m_F_ortho)
|
|
in
|
|
|
|
|
|
(* MOs in orthogonal MO basis *)
|
|
let m_C', eigenvalues =
|
|
diagonalize_symm m_F_diis
|
|
in
|
|
|
|
(* Re-compute eigenvalues to remove level-shift *)
|
|
let eigenvalues =
|
|
let m_F_ortho =
|
|
xt_o_x m_F0 m_X
|
|
in
|
|
xt_o_x m_F_ortho m_C'
|
|
|> Mat.copy_diag
|
|
in
|
|
|
|
(* MOs in AO basis *)
|
|
let m_C =
|
|
gemm m_X m_C'
|
|
in
|
|
|
|
(* Hartree-Fock energy *)
|
|
let energy =
|
|
nuclear_repulsion +. 0.5 *. ( Mat.gemm_trace m_P_a (Mat.add m_Hc_a m_F_a) +.
|
|
Mat.gemm_trace m_P_b (Mat.add m_Hc_b m_F_b) )
|
|
in
|
|
|
|
(* Convergence criterion *)
|
|
let error =
|
|
error_fock
|
|
|> Mat.as_vec
|
|
|> amax
|
|
|> abs_float
|
|
in
|
|
{ empty with
|
|
iteration = nSCF ;
|
|
eigenvalues = Some eigenvalues ;
|
|
coefficients = Some m_C ;
|
|
error = Some error ;
|
|
diis = Some diis ;
|
|
energy = Some energy ;
|
|
density_a = Some m_P_a ;
|
|
density_b = Some m_P_b ;
|
|
fock_a = Some fock_a ;
|
|
fock_b = Some fock_b ;
|
|
}
|
|
|
|
in
|
|
|
|
|
|
let scf_iteration data =
|
|
match kind with
|
|
| RHF -> scf_iteration_rhf data
|
|
| ROHF -> scf_iteration_rohf data
|
|
| _ -> failwith "Not implemented"
|
|
in
|
|
|
|
let array_data =
|
|
|
|
let storage =
|
|
Array.make max_scf None
|
|
in
|
|
|
|
let rec iteration = function
|
|
| 0 -> Some (scf_iteration { empty with coefficients = Some m_C })
|
|
| n -> begin
|
|
match storage.(n) with
|
|
| Some result -> Some result
|
|
| None ->
|
|
begin
|
|
let data =
|
|
(iteration (n-1))
|
|
in
|
|
match data with
|
|
| None -> None
|
|
| Some data ->
|
|
begin
|
|
(** Check convergence *)
|
|
let converged, error =
|
|
match data.error with
|
|
| None -> false, 0.
|
|
| Some error -> (data.iteration = max_scf || error < threshold_SCF), error
|
|
in
|
|
if converged then
|
|
None
|
|
else
|
|
begin
|
|
storage.(n-1) <- Some { empty with
|
|
iteration = data.iteration;
|
|
energy = data.energy ;
|
|
eigenvalues = data.eigenvalues ;
|
|
error = data.error ;
|
|
};
|
|
storage.(n) <- Some (scf_iteration data);
|
|
storage.(n);
|
|
end
|
|
end
|
|
end
|
|
end
|
|
in
|
|
Array.init max_scf (fun i -> lazy (iteration i))
|
|
in
|
|
{
|
|
kind;
|
|
simulation;
|
|
guess ;
|
|
data = array_data;
|
|
nocc;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let linewidth = 60
|
|
|
|
let pp_iterations ppf t =
|
|
Format.fprintf ppf "@[%4s%s@]@." "" (Printing.line linewidth);
|
|
Format.fprintf ppf "@[%4s@[%5s@]@,@[%16s@]@,@[%16s@]@,@[%11s@]@]@."
|
|
"" "#" "HF energy " "Convergence" "HOMO-LUMO";
|
|
Format.fprintf ppf "@[%4s%s@]@." "" (Printing.line linewidth);
|
|
let nocc = nocc t in
|
|
Array.iter (fun data ->
|
|
let data = Lazy.force data in
|
|
match data with
|
|
| None -> ()
|
|
| Some data ->
|
|
let e = of_some data.eigenvalues in
|
|
let gap = e.{nocc+1} -. e.{nocc} in
|
|
begin
|
|
Format.fprintf ppf "@[%4s@[%5d@]@,@[%16.8f@]@,@[%16.4e@]@,@[%11.4f@]@]@." ""
|
|
(data.iteration) (of_some data.energy) (of_some data.error) gap;
|
|
end
|
|
) t.data;
|
|
Format.fprintf ppf "@[%4s%s@]@." "" (Printing.line linewidth)
|
|
|
|
|
|
let pp_summary ppf t =
|
|
let print text value =
|
|
Format.fprintf ppf "@[@[%30s@]@,@[%16.10f@]@]@;" text value;
|
|
and line () =
|
|
Format.fprintf ppf "@[ %s @]@;" (Printing.line (linewidth-4));
|
|
in
|
|
let ha_to_ev = Constants.ha_to_ev in
|
|
let e = eigenvalues t in
|
|
|
|
Format.fprintf ppf "@[%s@]@;" (Printing.line ~c:'=' linewidth);
|
|
Format.fprintf ppf "@[<v>";
|
|
print "One-electron energy" (kin_energy t +. eN_energy t) ;
|
|
print "Kinetic" (kin_energy t) ;
|
|
print "Potential" (eN_energy t) ;
|
|
line () ;
|
|
print "Two-electron energy" (coulomb_energy t +. exchange_energy t) ;
|
|
print "Coulomb" (coulomb_energy t) ;
|
|
print "Exchange" (exchange_energy t) ;
|
|
line ();
|
|
print "HF HOMO" (ha_to_ev *. e.{nocc t});
|
|
print "HF LUMO" (ha_to_ev *. e.{nocc t + 1});
|
|
print "HF LUMO-LUMO" (ha_to_ev *. (e.{nocc t + 1} -. e.{nocc t }));
|
|
line ();
|
|
print "Electronic energy" (energy t -. nuclear_repulsion t) ;
|
|
print "Nuclear repulsion" (nuclear_repulsion t) ;
|
|
print "Hartree-Fock energy" (energy t) ;
|
|
Format.fprintf ppf "@]";
|
|
Format.fprintf ppf "@[%s@]@;" (Printing.line ~c:'=' linewidth)
|
|
|
|
|
|
let pp_hf ppf t =
|
|
Format.fprintf ppf "@.@[%s@]@." (Printing.line ~c:'=' 70);
|
|
Format.fprintf ppf "@[%34s %-34s@]@." (match t.kind with
|
|
| UHF -> "Unrestricted"
|
|
| RHF -> "Restricted"
|
|
| ROHF -> "Restricted Open-shell") "Hartree-Fock";
|
|
Format.fprintf ppf "@[%s@]@.@." (Printing.line ~c:'=' 70);
|
|
Format.fprintf ppf "@[%a@]@." pp_iterations t;
|
|
Format.fprintf ppf "@[<v 4>@;%a@]@." pp_summary t
|
|
|