10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2024-11-15 02:23:39 +01:00
QCaml/CI/F12CI.ml

296 lines
6.9 KiB
OCaml

open Lacaml.D
type t =
{
gamma : float;
mo_basis : MOBasis.t ;
aux_basis : MOBasis.t ;
det_space : DeterminantSpace.t ;
ci : CI.t ;
eigensystem : (Mat.t * Vec.t) lazy_t;
}
let ci t = t.ci
let mo_basis t = t.mo_basis
let det_space t = t.det_space
let mo_class t = DeterminantSpace.mo_class @@ det_space t
let eigensystem t = Lazy.force t.eigensystem
let f12_integrals mo_basis =
let two_e_ints = MOBasis.f12_ints mo_basis in
( (fun i j _ -> 0.),
(fun i j k l s s' ->
if s' = Spin.other s then
F12.get_phys two_e_ints i j k l
else
(F12.get_phys two_e_ints i j k l) -.
(F12.get_phys two_e_ints i j l k)
) )
let h_ij mo_basis ki kj =
let integrals =
List.map (fun f -> f mo_basis)
[ CI.h_integrals ]
in
CIMatrixElement.make integrals ki kj
|> List.hd
let f_ij gamma mo_basis ki kj =
let integrals =
List.map (fun f -> f mo_basis)
[ f12_integrals ]
in
let integral =
CIMatrixElement.make integrals ki kj
|> List.hd
in
gamma *. integral
(*
match Determinant.degrees ki kj with
| (2,0)
| (0,2) -> 0.5 *. gamma *. integral
| _ -> gamma *. integral
*)
let is_internal det_space =
let m l =
List.fold_left (fun accu i ->
let j = i-1 in Z.(logor accu (shift_left one j))
) Z.zero l
in
let mo_class = DeterminantSpace.mo_class det_space in
let aux_mask = m (MOClass.auxiliary_mos mo_class) in
fun a ->
let alfa =
Determinant.alfa a
|> Spindeterminant.bitstring
in
if Z.logand aux_mask alfa <> Z.zero then
false
else
let beta =
Determinant.beta a
|> Spindeterminant.bitstring
in
Z.logand aux_mask beta = Z.zero
let dressing_vector gamma aux_basis f12_amplitudes ci =
(*
let i_o1_alfa = h_ij aux_basis in
let alfa_o2_i = f_ij aux_basis in
let w_alfa _ _ = 1. in
let mo_class = CI.mo_class ci in
let list_holes = List.concat
[ MOClass.inactive_mos mo_class ; MOClass.active_mos mo_class ]
and list_particles2 = MOClass.auxiliary_mos mo_class
and list_particles1 = List.concat
[ MOClass.active_mos mo_class ; MOClass.virtual_mos mo_class ; MOClass.auxiliary_mos mo_class ]
in
(* Single state here *)
let result =
CI.second_order_sum ci list_holes list_particles1 list_holes list_particles2
(is_internal ci.det_space) i_o1_alfa alfa_o2_i w_alfa f12_amplitudes ~unique:false
|> Vec.of_list
in
Matrix.sparse_of_vector_array [| Vector.sparse_of_vec result |]
*)
let out_dets =
DeterminantSpace.fci_of_mo_basis ~frozen_core:false aux_basis
|> DeterminantSpace.determinants_array
|> Array.to_list
|> List.filter (fun i -> not (is_internal ci.CI.det_space i))
|> Array.of_list
in
let in_dets =
DeterminantSpace.determinants_array ci.CI.det_space
in
let m_H_aux =
Array.map (fun ki ->
Array.map (fun kj ->
h_ij aux_basis ki kj
) out_dets
) in_dets
|> Mat.of_array
in
let m_F_aux =
Array.map (fun ki ->
Array.map (fun kj ->
f_ij gamma aux_basis ki kj
) out_dets
) in_dets
|> Mat.of_array
in
let m_HF =
gemm m_H_aux m_F_aux ~transb:`T
in
gemm m_HF f12_amplitudes
|> Matrix.sparse_of_mat
let make ~simulation ?(threshold=1.e-12) ?(frozen_core=true) ~mo_basis ~aux_basis_filename () =
let gamma = 0.5 in
let mo_num = MOBasis.size mo_basis in
(* Add auxiliary basis set *)
let s =
let charge = Charge.to_int @@ Simulation.charge simulation
and multiplicity = Electrons.multiplicity @@ Simulation.electrons simulation
and nuclei = Simulation.nuclei simulation
in
let general_basis =
Basis.general_basis @@ Simulation.basis simulation
in
GeneralBasis.combine [
general_basis ; GeneralBasis.read aux_basis_filename
]
|> Basis.of_nuclei_and_general_basis nuclei
|> Simulation.make ~charge ~multiplicity ~nuclei
in
let aux_basis =
MOBasis.of_mo_basis s mo_basis
in
let det_space =
DeterminantSpace.fci_f12_of_mo_basis aux_basis ~frozen_core mo_num
in
let ci = CI.make det_space in
let ci_coef, ci_energy =
let x = Lazy.force ci.eigensystem in
Parallel.broadcast (lazy x)
in
let f12_amplitudes =
(* While in a sequential region, initiate the parallel
4-idx transformation to avoid nested parallel jobs
*)
ignore @@ MOBasis.f12_ints aux_basis;
let f = fun ki kj ->
if ki <> kj then
(f_ij gamma aux_basis ki kj)
else
1. +. (f_ij gamma aux_basis ki kj)
in
let m_F =
CI.create_matrix_spin f det_space
|> Lazy.force
in
fun ci_coef ->
Matrix.ax_eq_b m_F (Matrix.dense_of_mat ci_coef)
|> Matrix.to_mat
in
let e_shift =
let det =
DeterminantSpace.determinant_stream det_space
|> Stream.next
in
h_ij aux_basis det det
in
let eigensystem = lazy (
let m_H =
Lazy.force ci.CI.m_H
in
let rec iteration ?(state=1) psi =
let delta =
dressing_vector gamma aux_basis (f12_amplitudes psi) ci
in
let f = 1.0 /. psi.{1,1} in
let delta_00 =
Util.list_range 2 (Mat.dim1 psi)
|> List.fold_left (fun accu i -> accu +.
(Matrix.get delta i 1) *. psi.{i,1} *. f) 0.
in
let delta = Matrix.to_mat delta in
delta.{1,1} <- delta.{1,1} -. delta_00;
(*------
TODO SINGLE STATE HERE
*)
let n_states = ci.CI.n_states in
let diagonal =
Vec.init (Matrix.dim1 m_H) (fun i ->
if i = 1 then
Matrix.get m_H i i +. delta.{1,1} *. f
else
Matrix.get m_H i i
)
in
let matrix_prod c =
let w =
Matrix.mm ~transa:`T m_H c
|> Matrix.to_mat
in
let c11 = Matrix.get c 1 1 in
Util.list_range 1 (Mat.dim1 w)
|> List.iter (fun i ->
let dci =
delta.{i,1} *. f ;
in
w.{i,1} <- w.{i,1} +. dci *. c11;
if (i <> 1) then
w.{1,1} <- w.{1,1} +. dci *. (Matrix.get c i 1);
);
Matrix.dense_of_mat w
in
let eigenvectors, eigenvalues =
Parallel.broadcast (lazy (
Davidson.make ~threshold:1.e-6 ~guess:psi ~n_states diagonal matrix_prod
))
in
let conv =
1.0 -. abs_float ( dot
(Mat.to_col_vecs psi).(0)
(Mat.to_col_vecs eigenvectors).(0) )
in
if Parallel.master then
Printf.printf "F12 Convergence : %e %f\n" conv (eigenvalues.{1} +. e_shift);
if conv > threshold then
iteration eigenvectors
else
let eigenvalues =
Vec.map (fun x -> x +. e_shift) eigenvalues
in
eigenvectors, eigenvalues
in
iteration ci_coef
)
in
{ mo_basis ; aux_basis ; det_space ; ci ; eigensystem ; gamma }