QCaml/Basis/PrimitiveShellPair.mli

109 lines
3.5 KiB
OCaml

(** Data structure describing a pair of primitive shells.
A primitive shell pair is the cartesian product between two sets of functions, each
set containing all the functions of a primitive shell. These are one-electron functions.
{% \\[
\left\\{ p_{k_x,k_y,k_z}(\mathbf{r}) \right\\} =
\left\\{ g_{n_x,n_y,n_z}(\mathbf{r}) \right\\} \times
\left\\{ g_{m_x,m_y,m_z}'(\mathbf{r}) \right\\}
\\] %}
where
{%
\begin{align*}
g_{n_x,n_y,n_z}(\mathbf{r}) & =
(x-X_A)^{n_x} (y-Y_A)^{n_y} (z-Z_A)^{n_z}
\exp \left( -\alpha |\mathbf{r}-\mathbf{A}|^2 \right) \\
g_{m_x,m_y,m_z}'(\mathbf{r}) & =
(x-X_B)^{m_x} (y-Y_B)^{m_y} (z-Z_B)^{m_z}
\exp \left( -\beta |\mathbf{r}-\mathbf{B}|^2 \right)
\end{align*}
%}
{!a_minus_b}, {!a_minus_b_sq} and {!norm_coef_scale} depend only on the
centering of the two shells, and {!ang_mom} only depends on the angular
momenta of the two shells. Hence, these quantities need to be computed only
once when a {!ContractedShellPair.t} is built. Hence, there is the
{!create_make_of} function which creates a [make] function which is suitable
for a {!ContractedShellPair.t}.
References:
[1] {{:http://dx.doi.org/10.1002/qua.560400604} P.M. Gill, B.G. Johnson, and J.A. Pople, International Journal of Quantum Chemistry 40, 745 (1991)}.
*)
type t
val make : PrimitiveShell.t -> PrimitiveShell.t -> t
(** Creates a primitive shell pair using two primitive shells. *)
val create_make_of : PrimitiveShell.t -> PrimitiveShell.t ->
(PrimitiveShell.t -> PrimitiveShell.t -> float -> t option)
(** Creates a make function [PrimitiveShell.t -> PrimitiveShell.t -> float -> t] in which
all the quantities common to the shell and independent of the exponent
are pre-computed.
The result is None if the normalization coefficient of the resulting
function is below the cutoff given as a last argument.
*)
val ang_mom : t -> AngularMomentum.t
(** Total angular momentum of the shell pair: sum of the angular momenta of
the shells. *)
val center : t -> Coordinate.t
(** Coordinates of the center {% $\mathbf{P}$ %}. *)
val monocentric : t -> bool
(** True if both shells of the pair have the same center. *)
val shell_a : t -> PrimitiveShell.t
(** Returns the first primitive shell that was used to build the shell pair. *)
val shell_b : t -> PrimitiveShell.t
(** Returns the second primitive shell that was used to build the shell pair. *)
val normalization : t -> float
(** Normalization coefficient of the shell pair. *)
val norm_scales : t -> float array
(** Normalization factor, characteristic of the powers of x, y and z of
both shells of the pair. It is the outer product of the 2
{!PrimitiveShell.norm_coef_scale} arrays of the shells consituting the
pair.
*)
val exponent : t -> float
(** Exponent of the Gaussian output of the Gaussian product : {% \\[ \alpha + \beta \\] %}*)
val exponent_inv : t -> float
(** Inverse of the exponent : {% \\[ \sigma_P = \frac{1}{\alpha + \beta} \\] %}*)
val a_minus_b : t -> Coordinate.t
(** {% $\mathbf{A}-\mathbf{B}$ %} *)
val a_minus_b_sq : t -> float
(** {% $|\mathbf{A}-\mathbf{B}|^2$ %} *)
val center_minus_a : t -> Coordinate.t
(** {% $\mathbf{P}-\mathbf{A}$ %} *)
val equivalent : t -> t -> bool
(** True if two primitive shell pairs are equivalent. *)
val hash : t -> int
(** Returns an integer characteristic of the shell pair. *)
val cmp : t -> t -> int
(** Arbitray comparison function for sorting. *)
val zkey_array : t -> Zkey.t array
(** Returns the array of Zkeys associated with the shell pair. *)