open Lacaml.D open Util open Constants (** One-electron orthogonal basis set, corresponding to Molecular Orbitals. *) module HF = HartreeFock_type module Si = Simulation type mo_type = | RHF | ROHF | CASSCF | Natural of string | Localized of string type t = { simulation : Simulation.t; (* Simulation which produced the MOs *) mo_type : mo_type; (* Kind of MOs (RHF, CASSCF, Localized...) *) mo_occupation : Vec.t; (* Occupation numbers *) mo_coef : Mat.t; (* Matrix of the MO coefficients in the AO basis *) eN_ints : NucInt.t lazy_t; (* Electron-nucleus potential integrals *) ee_ints : ERI.t lazy_t; (* Electron-electron potential integrals *) kin_ints : KinInt.t lazy_t; (* Kinetic energy integrals *) one_e_ints : Mat.t lazy_t; (* Kinetic energy integrals *) } let size t = Mat.dim2 t.mo_coef let simulation t = t.simulation let mo_type t = t.mo_type let ao_basis t = Si.ao_basis t.simulation let mo_occupation t = t.mo_occupation let mo_coef t = t.mo_coef let eN_ints t = Lazy.force t.eN_ints let ee_ints t = Lazy.force t.ee_ints let kin_ints t = Lazy.force t.kin_ints let two_e_ints t = Lazy.force t.ee_ints let one_e_ints t = Lazy.force t.one_e_ints let mo_matrix_of_ao_matrix ~mo_coef ao_matrix = xt_o_x ~x:mo_coef ~o:ao_matrix let ao_matrix_of_mo_matrix ~mo_coef ~ao_overlap mo_matrix = let sc = gemm ao_overlap mo_coef in gemm sc @@ gemm ~transb:`T mo_matrix sc let four_index_transform ~mo_coef eri_ao = let ao_num = Mat.dim1 mo_coef in let mo_num = Mat.dim2 mo_coef in let eri_mo = ERI.create ~size:mo_num `Dense in let mo_num_2 = mo_num * mo_num in let ao_num_2 = ao_num * ao_num in let ao_mo_num = ao_num * mo_num in let range_mo = list_range 1 mo_num in let range_ao = list_range 1 ao_num in let u = Mat.create mo_num_2 mo_num and o = Mat.create ao_num ao_num_2 and p = Mat.create ao_num_2 mo_num and q = Mat.create ao_mo_num mo_num in Printf.eprintf "Transforming %d integrals : %!" mo_num; List.iter (fun delta -> Printf.eprintf "%d %!" delta; Mat.fill u 0.; List.iter (fun l -> if abs_float mo_coef.{l,delta} > epsilon then begin let jk = ref 0 in List.iter (fun k -> List.iter (fun j -> incr jk; ERI.get_chem_all_i eri_ao ~j ~k ~l |> Array.iteri (fun i x -> o.{i+1,!jk} <- x) ) range_ao ) range_ao; (* o_i_jk *) let p = gemm ~transa:`T ~c:p o mo_coef (* p_jk_alpha = \sum_i o_i_jk c_i_alpha *) in let p' = Bigarray.reshape_2 (Bigarray.genarray_of_array2 p) ao_num ao_mo_num (* p_j_kalpha *) in let q = gemm ~transa:`T ~c:q p' mo_coef (* q_kalpha_beta = \sum_j p_j_kalpha c_j_beta *) in let q' = Bigarray.reshape_2 (Bigarray.genarray_of_array2 q) ao_num mo_num_2 (* q_k_alphabeta = \sum_j p_j_kalpha c_j_beta *) in ignore @@ gemm ~transa:`T ~beta:1. ~alpha:mo_coef.{l,delta} ~c:u q' mo_coef ; (* u_alphabeta_gamma = \sum_k q_k_alphabeta c_k_gamma *) end ) range_ao; let u = Bigarray.reshape (Bigarray.genarray_of_array2 u) [| mo_num ; mo_num ; mo_num |] |> Bigarray.array3_of_genarray in List.iter (fun gamma -> List.iter (fun beta -> List.iter (fun alpha -> let x = u.{alpha,beta,gamma} in if x <> 0. then ERI.set_chem eri_mo alpha beta gamma delta x ) (list_range 1 beta) ) range_mo ) (list_range 1 delta) ) range_mo; Printf.eprintf "\n%!"; eri_mo let make ~simulation ~mo_type ~mo_occupation ~mo_coef () = let ao_basis = Si.ao_basis simulation in let eN_ints = lazy ( AOBasis.eN_ints ao_basis |> NucInt.matrix |> mo_matrix_of_ao_matrix ~mo_coef |> NucInt.of_matrix ) and kin_ints = lazy ( AOBasis.kin_ints ao_basis |> KinInt.matrix |> mo_matrix_of_ao_matrix ~mo_coef |> KinInt.of_matrix ) and ee_ints = lazy ( AOBasis.ee_ints ao_basis |> four_index_transform ~mo_coef ) in let one_e_ints = lazy ( Mat.add (NucInt.matrix @@ Lazy.force eN_ints) (KinInt.matrix @@ Lazy.force kin_ints) ) in { simulation ; mo_type ; mo_occupation ; mo_coef ; eN_ints ; ee_ints ; kin_ints ; one_e_ints } let of_rhf hf = let mo_num = Vec.dim hf.HF.eigenvalues in let mo_coef = hf.HF.eigenvectors in let simulation = hf.HF.simulation in let mo_type = RHF in let nocc = hf.HF.nocc in let mo_occupation = Array.init mo_num (fun i -> if i < nocc then 2. else 0.) |> Vec.of_array in let result = make ~simulation ~mo_type ~mo_occupation ~mo_coef () in let () = let e = ref 0. in let t = KinInt.matrix (Lazy.force result.kin_ints) in let v = NucInt.matrix (Lazy.force result.eN_ints) in let g = Lazy.force result.ee_ints in for i = 1 to 5 do e := !e +. 2. *. (t.{i,i} +. v.{i,i}) done; Printf.printf "Energy one-e = %20.15f\n" !e; let e2 = ref 0. in for i = 1 to 5 do for j = i+1 to 5 do e2 := !e2 +. 2. *. (ERI.get_phys g i j i j -. ERI.get_phys g i j j i) done; done; for i = 1 to 5 do for j = 1 to 5 do e2 := !e2 +. ERI.get_phys g i j i j done; done; Printf.printf "Energy two-e = %20.15f\n" !e2; Printf.printf "Energy = %20.15f\n" (Si.nuclear_repulsion simulation +. !e +. !e2) in result let of_hartree_fock = function | HF.RHF hf -> of_rhf hf | _ -> assert false