open Lacaml.D module Ds = DeterminantSpace module De = Determinant module Sp = Spindeterminant type t = { mo_basis : MOBasis.t ; det_space : DeterminantSpace.t ; ci : CI.t ; hf12_integrals : HF12.t ; eigensystem : (Mat.t * Vec.t) lazy_t; } let ci t = t.ci let mo_basis t = t.mo_basis let det_space t = t.det_space let mo_class t = Ds.mo_class @@ det_space t let eigensystem t = Lazy.force t.eigensystem (* let single_matrices hf12_integrals density = let nocc = Mat.dim1 density in let nvir = Mat.dim2 density in let { HF12. simulation ; aux_basis ; hf12 ; hf12_anti ; hf12_single ; hf12_single_anti } = hf12_integrals in let f12 = MOBasis.f12_ints aux_basis in let eri = MOBasis.two_e_ints aux_basis in let d = Mat.as_vec density in let v_s = Mat.create nocc nvir in let v_o = Mat.create nocc nvir in let h_o, h_s, f_o, f_s = Mat.create nocc nvir , Mat.create nocc nvir , Mat.create nocc nvir , Mat.create nocc nvir , in for a=1 to nvir do for m=1 to occ do for u=1 to nocc do for t=1 to nocc do let hmtau = ERI.get_phys eri m t a u and hmtua = ERI.get_phys eri m t u a in v_o.{t,u} <- hmtau; v_s.{t,u} <- hmtau -. hmtua; done done; h_o.{m,a} <- dot d_o @@ Mat.as_vec v_o; h_s.{m,a} <- dot d_s @@ Mat.as_vec v_s for u=1 to nocc do for t=1 to nocc do let fmtau = ERI.get_phys f12 m t a u and fmtua = ERI.get_phys f12 m t u a in v_o.{t,u} <- 0.375 *. fmtau +. 0.125 *. fmtua; v_s.{t,u} <- 0.25 *, (fmtau -. fmtua); done done; f_o.{m,a} <- dot d_o @@ Mat.as_vec v_o; f_s.{m,a} <- dot d_s @@ Mat.as_vec v_s done done; *) (*--- let hf_ij_non_zero mo_basis hf12_integrals deg_a deg_b ki kj = let integrals = [ let { HF12. simulation ; aux_basis ; hf12 ; hf12_anti ; hf12_single ; hf12_single_anti } = hf12_integrals in let kia = De.alfa ki and kib = De.beta ki in let kja = De.alfa kj and kjb = De.beta kj in let mo_a = Bitstring.logand (Sp.bitstring kia) (Sp.bitstring kja) |> Bitstring.to_list |> Array.of_list and mo_b = Bitstring.logand (Sp.bitstring kib) (Sp.bitstring kjb) |> Bitstring.to_list |> Array.of_list in let aux_mos = Util.list_range (MOBasis.size mo_basis) (MOBasis.size aux_basis) |> Array.of_list in let one_e _ _ _ = 0. in let h = MOBasis.ee_ints aux_basis in let two_e_h i j k l s s' = if s' <> s then ERI.get_phys h i j k l else (ERI.get_phys h i j k l) -. (ERI.get_phys h i j l k) in let f = MOBasis.f12_ints aux_basis in let two_e_f i j k l s s' = let fijkl = F12.get_phys f i j k l and fijlk = F12.get_phys f i j l k in if s' <> s then 0.325 *. fijkl +. 0.125 *. fijlk else 0.25 *. (fijkl -. fijlk) in (* let mo_of_s = function | Spin.Alfa -> mo_a | Spin.Beta -> mo_b in *) let two_e i j k l s s' = ( if s = s' then hf12_anti.{i,j,k,l} -. ( (Array.fold_left (fun accu m -> accu +. hf12_single_anti.{m,i,j,k,l}) 0. mo_a) +. (Array.fold_left (fun accu m -> accu +. hf12_single_anti.{m,j,i,l,k}) 0. mo_b) ) else hf12.{i,j,k,l} -. ( (Array.fold_left (fun accu m -> accu +. hf12_single.{m,i,j,k,l}) 0. mo_a) +. (Array.fold_left (fun accu m -> accu +. hf12_single.{m,j,i,l,k}) 0. mo_b) ) ) (* +. Array.fold_left ( fun accu a -> accu +. (Array.fold_left ( fun accu m -> accu +. two_e_h m i m a s s) 0. (mo_of_s s) +. Array.fold_left ( fun accu m -> accu +. two_e_h m i m a s s) 0. (mo_of_s @@ Spin.other s) ) *. (two_e_f a j k l s s') ) 0. aux_mos *) in let three_e i j k l m n s s' s'' = Array.fold_left (fun accu a -> accu +. two_e_h i j l a s s' *. two_e_f a k m n s' s'') 0. aux_mos -. Array.fold_left (fun accu a -> accu +. two_e_h j i m a s' s *. two_e_f a k l n s s'') 0. aux_mos +. Array.fold_left (fun accu a -> accu +. two_e_h j k m a s' s'' *. two_e_f a i n l s'' s ) 0. aux_mos -. Array.fold_left (fun accu a -> accu +. two_e_h k j n a s'' s' *. two_e_f a i m l s' s ) 0. aux_mos +. Array.fold_left (fun accu a -> accu +. two_e_h k i n a s'' s *. two_e_f a j l m s s' ) 0. aux_mos -. Array.fold_left (fun accu a -> accu +. two_e_h i k l a s s'' *. two_e_f a j n m s'' s' ) 0. aux_mos in (one_e, two_e, Some three_e) ] in CIMatrixElement.non_zero integrals deg_a deg_b ki kj |> List.hd let dressing_vector ~frozen_core hf12_integrals f12_amplitudes ci = if Parallel.master then Printf.printf "Building matrix\n%!"; let det_space = ci.CI.det_space in let mo_basis = Ds.mo_basis det_space in let m_HF = let f = match Ds.determinants det_space with | Ds.Arbitrary _ -> CI.create_matrix_arbitrary | Ds.Spin _ -> CI.create_matrix_spin_computed ~nmax:3 in f (fun deg_a deg_b ki kj -> hf_ij_non_zero mo_basis hf12_integrals deg_a deg_b ki kj ) det_space in Matrix.mm (Lazy.force m_HF) (Matrix.dense_of_mat f12_amplitudes) --- *) let hf_ij_non_zero hf12_integrals deg_a deg_b ki kj = let integrals = [ let { HF12. simulation ; aux_basis ; hf12 ; hf12_anti ; hf12_single ; hf12_single_anti } = hf12_integrals in let kia = De.alfa ki and kib = De.beta ki in let kja = De.alfa kj and kjb = De.beta kj in let mo_a = Bitstring.logand (Sp.bitstring kia) (Sp.bitstring kja) |> Bitstring.to_list and mo_b = Bitstring.logand (Sp.bitstring kib) (Sp.bitstring kjb) |> Bitstring.to_list in let one_e _ _ _ = 0. in let two_e i j k l s s' = if s = s' then hf12_anti.{i,j,k,l} -. ( (List.fold_left (fun accu m -> accu +. hf12_single_anti.{m,i,j,k,l}) 0. mo_a) +. (List.fold_left (fun accu m -> accu +. hf12_single_anti.{m,j,i,l,k}) 0. mo_b) ) else hf12.{i,j,k,l} -. ( (List.fold_left (fun accu m -> accu +. hf12_single.{m,i,j,k,l}) 0. mo_a) +. (List.fold_left (fun accu m -> accu +. hf12_single.{m,j,i,l,k}) 0. mo_b) ) in let h = MOBasis.ee_ints aux_basis in let two_e_h i j k l s s' = if s' <> s then ERI.get_phys h l k j i else (ERI.get_phys h l k j i) -. (ERI.get_phys h k l j i) in let f = MOBasis.f12_ints aux_basis in let two_e_f i j k l s s' = if s' <> s then F12.get_phys f i j k l else (F12.get_phys f i j k l) -. (F12.get_phys f i j l k) in let mo_of_s = function | Spin.Alfa -> mo_a | Spin.Beta -> mo_b in let three_e i j k l m n s s' s'' = List.fold_left (fun accu a -> accu +. two_e_h i j l a s s' *. two_e_f a k m n s' s'') 0. (mo_of_s s' ) -. List.fold_left (fun accu a -> accu +. two_e_h j i m a s' s *. two_e_f a k l n s s'') 0. (mo_of_s s ) +. List.fold_left (fun accu a -> accu +. two_e_h j k m a s' s'' *. two_e_f a i n l s'' s ) 0. (mo_of_s s'') -. List.fold_left (fun accu a -> accu +. two_e_h k j n a s'' s' *. two_e_f a i m l s' s ) 0. (mo_of_s s' ) +. List.fold_left (fun accu a -> accu +. two_e_h k i n a s'' s *. two_e_f a j l m s s' ) 0. (mo_of_s s ) -. List.fold_left (fun accu a -> accu +. two_e_h i k l a s s'' *. two_e_f a j n m s'' s' ) 0. (mo_of_s s'') in (one_e, two_e, Some three_e) ] in CIMatrixElement.non_zero integrals deg_a deg_b ki kj |> List.hd let dressing_vector ~frozen_core hf12_integrals f12_amplitudes ci = if Parallel.master then Printf.printf "Building matrix\n%!"; let det_space = ci.CI.det_space in let m_HF = let f = match Ds.determinants det_space with | Ds.Arbitrary _ -> CI.create_matrix_arbitrary | Ds.Spin _ -> CI.create_matrix_spin_computed ~nmax:3 in f (fun deg_a deg_b ki kj -> hf_ij_non_zero hf12_integrals deg_a deg_b ki kj ) det_space in Matrix.mm (Lazy.force m_HF) (Matrix.dense_of_mat f12_amplitudes) let make ~simulation ?(threshold=1.e-12) ~frozen_core ~mo_basis ~aux_basis_filename ?(state=1) () = let det_space = DeterminantSpace.fci_of_mo_basis mo_basis ~frozen_core in let ci = CI.make ~n_states:state det_space in let hf12_integrals = HF12.make ~simulation ~mo_basis ~aux_basis_filename () in let ci_coef, ci_energy = let x = Lazy.force ci.eigensystem in Parallel.broadcast (lazy x) in let eigensystem = lazy ( let m_H = Lazy.force ci.CI.m_H in let rec iteration ~state psi = (* Format.printf "%a@." DeterminantSpace.pp_det_space @@ CI.det_space ci; Format.printf "%a@." Matrix.pp_matrix @@ Matrix.dense_of_mat psi; *) let column_idx = iamax (Mat.to_col_vecs psi).(state-1) in let delta = (* delta_i = {% $\sum_j c_j H_{ij}$ %} *) dressing_vector ~frozen_core hf12_integrals psi ci |> Matrix.to_mat in (* Format.printf "%a@." Matrix.pp_matrix @@ Matrix.dense_of_mat delta; *) Printf.printf "Cmax : %e\n" psi.{column_idx,state}; Printf.printf "Norm : %e\n" (sqrt (gemm ~transa:`T delta delta).{state,state}); let f = 1.0 /. psi.{column_idx,state} in let delta_00 = (* Delta_00 = {% $\sum_{j \ne x} delta_j c_j / c_x$ %} *) f *. ( (gemm ~transa:`T delta psi).{state,state} -. delta.{column_idx,state} *. psi.{column_idx,state} ) in Printf.printf "Delta_00 : %e %e\n" delta.{column_idx,state} delta_00; delta.{column_idx,state} <- delta.{column_idx,state} -. delta_00; let eigenvectors, eigenvalues = let delta = lacpy delta in Mat.scal f delta; for k=1 to state-1 do for i=1 to Mat.dim1 delta do delta.{i,k} <- delta.{i,state} done; done; let diagonal = Vec.init (Matrix.dim1 m_H) (fun i -> if i = column_idx then Matrix.get m_H i i +. delta.{column_idx,state} else Matrix.get m_H i i ) in let matrix_prod c = let w = Matrix.mm ~transa:`T m_H c |> Matrix.to_mat in let c = Matrix.to_mat c in for k=1 to state do for i=1 to (Mat.dim1 w) do w.{i,k} <- w.{i,k} +. delta.{i,k} *. c.{column_idx, k} ; w.{column_idx,k} <- w.{column_idx,k} +. delta.{i,k} *. c.{i,k}; done; w.{column_idx,k} <- w.{column_idx,k} -. delta.{column_idx,k} *. c.{column_idx,k}; done; Matrix.dense_of_mat w in Parallel.broadcast (lazy ( Davidson.make ~threshold:1.e-10 ~guess:psi ~n_states:state diagonal matrix_prod )) in let eigenvectors = Conventions.rephase @@ Util.remove_epsilons eigenvectors in Vec.iter (fun energy -> Printf.printf "%g\t" energy) eigenvalues; print_newline (); let conv = 1.0 -. abs_float ( dot (Mat.to_col_vecs psi).(0) (Mat.to_col_vecs eigenvectors).(0) ) in if Parallel.master then Printf.printf "F12 Convergence : %e %f\n" conv (eigenvalues.{state} +. Simulation.nuclear_repulsion simulation); (* let cabs_singles = let f = Fock.make_rhf ~density ~ao_basis:large_ao_basis in in *) if conv > threshold then iteration ~state eigenvectors else let eigenvalues = Vec.map (fun x -> x +. ci.CI.e_shift) eigenvalues in eigenvectors, eigenvalues in iteration ~state ci_coef ) in { mo_basis ; det_space ; ci ; hf12_integrals ; eigensystem }