(** %{ $ \langle ij | H F | kl \rangle $ %} integrals. *) open Lacaml.D module Fis = FourIdxStorage type q = (float, Bigarray.float64_elt, Bigarray.fortran_layout) Bigarray.Genarray.t type t = { simulation : Simulation.t ; aux_basis : MOBasis.t ; hf12 : q ; (* hf12.{i,j,k,l} = \sum_{ab} + \sum_{am} + \sum_{bm} *) hf12_anti: q ; (* hf12_anti.{i,j,k,l} = \sum_{ab} ( - ) ( - ) + \sum_{am} ( - ) ( - ) + \sum_{bm} ( - ) ( - ) *) hf12_single : q ; (* hf12.{m,i,j,k,l} = \sum_{a} *) hf12_single_anti: q ; (* hf12_anti.{m,i,j,k,l} = \sum_{ab} ( - ) ( - ) *) } let make ~simulation ~mo_basis ~aux_basis_filename () = let f12 = Util.of_some @@ Simulation.f12 simulation in let mo_num = MOBasis.size mo_basis in (* Add auxiliary basis set *) let simulation = let charge = Charge.to_int @@ Simulation.charge simulation and multiplicity = Electrons.multiplicity @@ Simulation.electrons simulation and nuclei = Simulation.nuclei simulation in let general_basis = Basis.general_basis @@ Simulation.basis simulation in GeneralBasis.combine [ general_basis ; GeneralBasis.read aux_basis_filename ] |> Basis.of_nuclei_and_general_basis nuclei |> Simulation.make ~f12 ~charge ~multiplicity ~nuclei in let aux_basis = MOBasis.of_mo_basis simulation mo_basis in let aux_num = MOBasis.size aux_basis in (* Fire calculation of F12 and ERI *) let f12 = MOBasis.f12_ints aux_basis in let eri = MOBasis.two_e_ints aux_basis in (* Compute the integrals *) if Parallel.master then Printf.eprintf "Computing HF12 integrals\n%!"; let hf12, hf12_anti, hf12_single, hf12_single_anti = let create4 n = Bigarray.Genarray.create Float64 Bigarray.fortran_layout [| n ; n ; n ; n |] in let create5 n = Bigarray.Genarray.create Float64 Bigarray.fortran_layout [| n ; n ; n ; n ; n |] in create4 mo_num , create4 mo_num , create5 mo_num , create5 mo_num in let h_s = Bigarray.Array3.create Float64 Bigarray.fortran_layout mo_num aux_num aux_num in let f_s = Bigarray.Array3.create Float64 Bigarray.fortran_layout aux_num aux_num mo_num in let h_o = Bigarray.Array3.create Float64 Bigarray.fortran_layout mo_num aux_num aux_num in let f_o = Bigarray.Array3.create Float64 Bigarray.fortran_layout aux_num aux_num mo_num in let hf_s = Mat.create mo_num mo_num in let hf_o = Mat.create mo_num mo_num in let hfm_s = Bigarray.Array3.create Float64 Bigarray.fortran_layout mo_num mo_num mo_num in let hfm_o = Bigarray.Array3.create Float64 Bigarray.fortran_layout mo_num mo_num mo_num in for a=1 to mo_num do for b=1 to mo_num do for i=1 to mo_num do h_s.{i, a, b} <- 0. ; h_o.{i, a, b} <- 0. done done done; for k=1 to mo_num do for b=1 to mo_num do for a=1 to mo_num do f_s.{a, b, k} <- 0. ; f_o.{a, b, k} <- 0. done done done; let task (j,l) = let h i a b = h_s.{i, a, b} <- ERI.get_phys eri i j a b -. ERI.get_phys eri i j b a ; h_o.{i, a, b} <- ERI.get_phys eri i j a b and f a b k = f_s.{a, b, k} <- 0.25 *. (F12.get_phys f12 a b k l -. F12.get_phys f12 a b l k) ; f_o.{a, b, k} <- 0.375 *. F12.get_phys f12 a b k l +. 0.125 *. F12.get_phys f12 b a k l in for a=mo_num+1 to aux_num do for b=mo_num+1 to aux_num do for i=1 to mo_num do h i a b done done done; for k=1 to mo_num do for b=mo_num+1 to aux_num do for a=mo_num+1 to aux_num do f a b k done done done; (* let h i a b = h_s.{i, a, b} <- 0. ; h_o.{i, a, b} <- 0. and f a b k = f_s.{a, b, k} <- 0. ; f_o.{a, b, k} <- 0. in *) for m=1 to mo_num do for a=mo_num+1 to aux_num do for i=1 to mo_num do h i a m ; h i m a done done done; for k=1 to mo_num do for m=1 to mo_num do for a=mo_num+1 to aux_num do f a m k ; f m a k done done done; let h_o' = Bigarray.(reshape (genarray_of_array3 h_o)) [| mo_num ; aux_num*aux_num |] |> Bigarray.array2_of_genarray in let f_o' = Bigarray.(reshape (genarray_of_array3 f_o)) [| aux_num*aux_num ; mo_num |] |> Bigarray.array2_of_genarray in let h_s' = Bigarray.(reshape (genarray_of_array3 h_s)) [| mo_num ; aux_num*aux_num |] |> Bigarray.array2_of_genarray in let f_s' = Bigarray.(reshape (genarray_of_array3 f_s)) [| aux_num*aux_num ; mo_num |] |> Bigarray.array2_of_genarray in let hf_s = gemm ~c:hf_s h_s' f_s' in let hf_o = gemm ~c:hf_o h_o' f_o' in let () = for m=1 to mo_num do let h_o' = Mat.init_cols mo_num aux_num (fun i a -> h_o.{i,m,a}) in let f_o' = Mat.init_cols aux_num mo_num (fun a k -> f_o.{m,a,k}) in let h_s' = Mat.init_cols mo_num aux_num (fun i a -> h_s.{i,m,a}) in let f_s' = Mat.init_cols aux_num mo_num (fun a k -> f_s.{m,a,k}) in let r_s, r_o = gemm h_s' f_s' , gemm h_o' f_o' in for k = 1 to mo_num do for i = 1 to mo_num do hfm_s.{m,i,k} <- r_s.{i,k}; hfm_o.{m,i,k} <- r_o.{i,k} done done done in hf_s, hf_o, hfm_s, hfm_o, j, l in let tasks = let rec next accu = function | _, 0 -> accu | 0, l -> next accu (mo_num, l-1) | j, l -> next ((j,l) :: accu) ((j-1), l) in next [] (mo_num, mo_num) |> Stream.of_list in Farm.run ~f:task ~ordered:true tasks |> Stream.iter (fun (hf_s, hf_o, hfm_s, hfm_o, j, l) -> for k=1 to mo_num do for i=1 to mo_num do hf12.{i,j,k,l} <- hf_o.{i,k} ; hf12_anti.{i,j,k,l} <- hf_s.{i,k} ; for m=1 to mo_num do hf12_single.{m,i,j,k,l} <- hfm_o.{m,i,k} ; hf12_single_anti.{m,i,j,k,l} <- hfm_s.{m,i,k} done done done ); (* for l=1 to mo_num do for k=1 to mo_num do for j=1 to mo_num do for i=1 to mo_num do Printf.printf "%d %d %d %d %e\n" i j k l result.{i,j,k,l} done done done done; Printf.printf "%!"; *) let result = { simulation ; aux_basis ; hf12 ; hf12_anti ; hf12_single ; hf12_single_anti } in Parallel.broadcast (lazy result)