open Common type t = { expo : float array; coef : float array; norm_coef : float array; norm_coef_scale : float array; prim : Primitive_shell.t array; center : Coordinate.t; ang_mom : Angular_momentum.t; index : int; } module Am = Angular_momentum module Co = Coordinate module Ps = Primitive_shell let make ?(index=0) lc = assert (Array.length lc > 0); let coef = Array.map fst lc and prim = Array.map snd lc in let center = Ps.center prim.(0) in let rec unique_center = function | 0 -> true | i -> if Ps.center prim.(i) = center then (unique_center [@tailcall]) (i-1) else false in if not (unique_center (Array.length prim - 1)) then invalid_arg "ContractedShell.make Coordinate.t differ"; let ang_mom = Ps.ang_mom prim.(0) in let rec unique_angmom = function | 0 -> true | i -> if Ps.ang_mom prim.(i) = ang_mom then (unique_angmom [@tailcall]) (i-1) else false in if not (unique_angmom (Array.length prim - 1)) then invalid_arg "ContractedShell.make: AngularMomentum.t differ"; let expo = Array.map Ps.exponent prim in let norm_coef = Array.map Ps.normalization prim in let norm_coef_scale = Ps.norm_scales prim.(0) in { index ; expo ; coef ; center ; ang_mom ; norm_coef ; norm_coef_scale ; prim } let with_index a i = { a with index = i } let exponents x = x.expo let coefficients x = x.coef let center x = x.center let ang_mom x = x.ang_mom let size x = Array.length x.prim let normalizations x = x.norm_coef let norm_scales x = x.norm_coef_scale let index x = x.index let size_of_shell x = Array.length x.norm_coef_scale let primitives x = x.prim let zkey_array x = Ps.zkey_array x.prim.(0) let values t point = (* Radial part *) let r = Co.( point |- t.center ) in let r2 = Co.dot r r in let radial = let rec aux accu = function | -1 -> accu | i -> let new_accu = t.norm_coef.(i) *. t.coef.(i) *. exp(-. t.expo.(i) *. r2) +. accu in aux new_accu (i-1) in aux 0. (Array.length t.expo - 1) in (* Angular part *) let n = Am.to_int t.ang_mom in let x = Array.create_float (n+1) in let y = Array.create_float (n+1) in let z = Array.create_float (n+1) in let fill arr v = arr.(0) <- 1.; for i=1 to n do arr.(i) <- arr.(i-1) *. v done; in fill x r.x; fill y r.y; fill z r.z; let powers = Am.zkey_array (Am.Singlet t.ang_mom) in Array.mapi (fun i a -> let p = Zkey.to_int_array a in t.norm_coef_scale.(i) *. x.(p.(0)) *. y.(p.(1)) *. z.(p.(2)) *. radial ) powers (** {2 Printers} *) open Format (* let pp_debug ppf x = fprintf ppf "@[<2>{@ "; fprintf ppf "@[<2>expo =@ %a ;@]@ " pp_float_array_size x.expo; fprintf ppf "@[<2>coef =@ %a ;@]@ " pp_float_array_size x.coef; fprintf ppf "@[<2>center =@ %a ;@]@ " Co.pp_angstrom x.center; fprintf ppf "@[<2>ang_mom =@ %a ;@]@ " Am.pp_string x.ang_mom; fprintf ppf "@[<2>norm_coef =@ %a ;@]@ " pp_float_array_size x.norm_coef; fprintf ppf "@[<2>norm_coef_scale =@ %a ;@]@ " pp_float_array_size x.norm_coef_scale; fprintf ppf "@[<2>index =@ %d ;@]@ " x.index; fprintf ppf "}@,@]" *) let pp ppf s = (match s.ang_mom with | Am.S -> fprintf ppf "@[%3d@] " (s.index+1) | _ -> fprintf ppf "@[%3d-%-3d@]" (s.index+1) (s.index+(Array.length s.norm_coef_scale)) ); fprintf ppf "@[%a@ %a@]@[" Am.pp_string s.ang_mom Co.pp s.center; Array.iter2 (fun e c -> fprintf ppf "@[%16.8e %16.8e@]@;" e c) s.expo s.coef; fprintf ppf "@]"