(** Direct Inversion of the Iterative Subspace algorithm. At iteration {% $m$ %}, one has: - {% $\mathbf{p}_m$ %}, a vector of parameters - {% $\mathbf{e}_m$ %}, an approximate error vector The DIIS approximate solution for iteration {% $m+1$ %} is given by {% \begin{align*} \mathbf{p}_{m+1} & = \sum_{i=1}^m c_i (\mathbf{p}^f + \mathbf{e}_i) \\ & = \sum_{i=1}^m c_i \mathbf{p}^f + \sum_i c_i \mathbf{e}_i \end{align*} %} where {% $\mathbf{p}^f$ %} is the exact solution. One wants to minimize the norm of the error vector imposing the constraint that {% $\sum_{i=1}^m c_i = 1$ %} with a Langrange multiplier {% $\lambda$ %}. {% \begin{align*} \mathcal{L} & = ||\sum_i c_i \mathbf{e}_i||^2 - \lambda \left(\sum_i c_i - 1\right) \\ & = \sum_{ij} c_i c_j B_{ij} - \lambda \left(\sum_{i=1}^m c_i - 1\right) \end{align*} %} with {% $B_{ij} = \langle \mathbf{e}_i | \mathbf{e}_j \rangle$ %}. Equating zero to the derivatives of {% $\mathcal{L}$ %} with respect to {% $c_i$ %} and {% $\lambda$ %} leads to {% \begin{equation*} \begin{bmatrix} B_{11} & B_{12} & B_{13} & ... & B_{1m} & 1 \\ B_{21} & B_{22} & B_{23} & ... & B_{2m} & 1 \\ B_{31} & B_{32} & B_{33} & ... & B_{3m} & 1 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ B_{m1} & B_{m2} & B_{m3} & ... & B_{mm} & 1 \\ 1 & 1 & 1 & ... & 1 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_m \\ -\lambda \end{bmatrix}= \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \end{equation*} %} The coefficients are then used to update {% $\mathbf{p}$ %} as {% $$ \mathbf{p}_{m+1}=\sum_{i=1}^m c_i\mathbf{p}_i. $$ %} *) type t val make : ?mmax:int -> unit -> t (** Initialize DIIS with a maximum size.*) val append : p:Lacaml.D.Vec.t -> e:Lacaml.D.Vec.t -> t -> t (** Append a parameter vector [p] and the corresponding error vector [e]. *) val next : t -> Lacaml.D.Vec.t (** Returns a new parameter vector. *)