open Lacaml.D open Simulation open Constants type t = { fock : Mat.t ; core : Mat.t ; coulomb : Mat.t ; exchange : Mat.t ; } module Ao = AOBasis let make ~density ao_basis = let m_P = density and m_T = Lazy.force ao_basis.Ao.kin_ints and m_V = Lazy.force ao_basis.Ao.eN_ints and m_G = Lazy.force ao_basis.Ao.ee_ints in let nBas = Mat.dim1 m_T in let m_Hc = Mat.add m_T m_V and m_J = Array.make_matrix nBas nBas 0. and m_K = Array.make_matrix nBas nBas 0. in for sigma = 1 to nBas do for nu = 1 to nBas do let m_Jnu = m_J.(nu-1) in for lambda = 1 to nBas do let p = m_P.{lambda,sigma} in if abs_float p > epsilon then for mu = 1 to nu do m_Jnu.(mu-1) <- m_Jnu.(mu-1) +. p *. ERI.get_phys m_G mu lambda nu sigma done done done done; for nu = 1 to nBas do let m_Knu = m_K.(nu-1) in for sigma = 1 to nBas do for lambda = 1 to nBas do let p = 0.5 *. m_P.{lambda,sigma} in if abs_float p > epsilon then for mu = 1 to nu do m_Knu.(mu-1) <- m_Knu.(mu-1) -. p *. ERI.get_phys m_G mu lambda sigma nu done done done done; for nu = 1 to nBas do for mu = 1 to nu-1 do m_J.(mu-1).(nu-1) <- m_J.(nu-1).(mu-1); m_K.(mu-1).(nu-1) <- m_K.(nu-1).(mu-1); done done; let m_J = Mat.of_array m_J and m_K = Mat.of_array m_K in { fock = Mat.add m_Hc @@ Mat.add m_J m_K ; core = m_Hc ; coulomb = m_J ; exchange = m_K }