open Linear_algebra (** One-electron orthogonal basis set, corresponding to Molecular Orbitals. *) module HF = Hartree_fock module Si = Simulation type ao = Ao.Ao_dim.t type mo = Mo_dim.t type mo_type = | RHF | ROHF | UHF | CASSCF | Projected | Natural of string | Localized of string type t = { simulation : Simulation.t; (* Simulation which produced the MOs *) mo_type : mo_type; (* Kind of MOs (RHF, CASSCF, Localized...) *) mo_occupation : mo Vector.t; (* Occupation numbers *) mo_coef : (ao,mo) Matrix.t; (* Matrix of the MO coefficients in the AO basis *) eN_ints : (mo,mo) Matrix.t lazy_t; (* Electron-nucleus potential integrals *) ee_ints : mo Four_idx_storage.t lazy_t; (* Electron-electron potential integrals *) kin_ints : (mo,mo) Matrix.t lazy_t; (* Kinetic energy integrals *) one_e_ints : (mo,mo) Matrix.t lazy_t; (* One-electron integrals *) (* TODO f12_ints : F12.t lazy_t; (* F12 integrals *) *) } let size t = Matrix.dim2 t.mo_coef let simulation t = t.simulation let mo_type t = t.mo_type let ao_basis t = Si.ao_basis t.simulation let mo_occupation t = t.mo_occupation let mo_coef t = t.mo_coef let eN_ints t = Lazy.force t.eN_ints let ee_ints t = Lazy.force t.ee_ints let kin_ints t = Lazy.force t.kin_ints let two_e_ints t = Lazy.force t.ee_ints (* TODO let f12_ints t = Lazy.force t.f12_ints *) let one_e_ints t = Lazy.force t.one_e_ints let mo_energies t = let m_C = mo_coef t in let f = let m_N = Matrix.of_diag @@ mo_occupation t in let m_P = Matrix.x_o_xt ~o:m_N ~x:m_C in match t.mo_type with | RHF -> Fock.make_rhf ~density:m_P (ao_basis t) | Projected | ROHF -> (Matrix.scale_inplace 0.5 m_P; Fock.make_uhf ~density_same:m_P ~density_other:m_P (ao_basis t)) | _ -> failwith "Not implemented" in let m_F0 = Fock.fock f in Matrix.xt_o_x ~o:m_F0 ~x:m_C |> Matrix.diag let mo_matrix_of_ao_matrix ~mo_coef ao_matrix = Matrix.xt_o_x ~x:mo_coef ~o:ao_matrix let ao_matrix_of_mo_matrix ~mo_coef ~ao_overlap mo_matrix = let sc = Matrix.gemm ao_overlap mo_coef in Matrix.x_o_xt ~x:sc ~o:mo_matrix let make ~simulation ~mo_type ~mo_occupation ~mo_coef () = let ao_basis = Si.ao_basis simulation in let eN_ints = lazy ( Ao.Basis.eN_ints ao_basis |> mo_matrix_of_ao_matrix ~mo_coef ) and kin_ints = lazy ( Ao.Basis.kin_ints ao_basis |> mo_matrix_of_ao_matrix ~mo_coef ) and ee_ints = lazy ( Ao.Basis.ee_ints ao_basis |> Four_idx_storage.four_index_transform mo_coef ) (* and f12_ints = lazy ( Ao.Basis.f12_ints ao_basis |> F12.four_index_transform mo_coef ) *) in let one_e_ints = lazy ( Matrix.add (Lazy.force eN_ints) (Lazy.force kin_ints) ) in { simulation ; mo_type ; mo_occupation ; mo_coef ; eN_ints ; ee_ints ; kin_ints ; one_e_ints ; } let values t point = let c = mo_coef t in let a = Ao.Basis.values (Simulation.ao_basis t.simulation) point in Matrix.gemv_t c a let of_hartree_fock hf = let mo_coef = HF.eigenvectors hf in let simulation = HF.simulation hf in let mo_occupation = HF.occupation hf in let mo_type = match HF.kind hf with | HF.RHF -> RHF | HF.ROHF -> ROHF | HF.UHF -> UHF in make ~simulation ~mo_type ~mo_occupation ~mo_coef () (* let of_mo_basis simulation other = let mo_coef = let basis = Simulation.ao_basis simulation in let basis_other = ao_basis other in let m_S = Ao.Overlap.(of_basis_pair (Ao.Basis.ao_basis basis) (Ao.Basis.ao_basis basis_other) ) in let m_X = Ao.Basis.ortho basis in (* Project other vectors in the current basis *) let m_C = gemm m_S @@ mo_coef other in (* Append dummy vectors to the input vectors *) let result = let vecs = Mat.to_col_vecs m_X in Array.iteri (fun i v -> if (i < Array.length vecs) then vecs.(i) <- v) (Mat.to_col_vecs m_C) ; Mat.of_col_vecs vecs in (* Gram-Schmidt Orthonormalization *) gemm m_X @@ (Util.qr_ortho @@ gemm ~transa:`T m_X result) |> Util.remove_epsilons |> Conventions.rephase in let mo_occupation = let occ = mo_occupation other in Vec.init (Mat.dim2 mo_coef) (fun i -> if (i <= Vec.dim occ) then occ.{i} else 0.) in make ~simulation ~mo_type:Projected ~mo_occupation ~mo_coef () *) let pp ?(start=1) ?(finish=0) ppf t = let rows = Matrix.dim1 t.mo_coef and cols = Matrix.dim2 t.mo_coef in let finish = match finish with | 0 -> cols | x -> x in let rec aux first = if (first > finish) then () else begin Format.fprintf ppf "@[@[@[%s@;" "Eigenvalues:"; Array.iteri (fun i x -> if (i+1 >= first) && (i+1 <= first+4 ) then Format.fprintf ppf "%12f@ " x) (Vector.to_array @@ mo_energies t); Format.fprintf ppf "@]@;"; Format.fprintf ppf "@[%a@]" (Lacaml.Io.pp_lfmat ~row_labels: (Array.init rows (fun i -> Printf.sprintf "%d " (i + 1))) ~col_labels: (Array.init (min 5 (cols-first+1)) (fun i -> Printf.sprintf "-- %d --" (i + first) )) ~print_right:false ~print_foot:false () ) (Matrix.to_bigarray_inplace t.mo_coef |> Lacaml.D.lacpy ~ac:first ~n:(min 5 (cols-first+1)) ) ; Format.fprintf ppf "@]@;@;@]"; (aux [@tailcall]) (first+5) end in aux start