open Common open Linear_algebra open Gaussian open Util open Constants module Am = Angular_momentum module Bs = Basis module Co = Coordinate module Cs = Contracted_shell module Csp = Contracted_shell_pair module Po = Powers module Psp = Primitive_shell_pair module Ps = Primitive_shell type t = (Basis.t, Basis.t) Matrix.t let cutoff = integrals_cutoff let to_powers x = let open Zkey in match to_powers x with | Six x -> x | _ -> assert false (** Computes all the kinetic integrals of the contracted shell pair *) let contracted_class shell_a shell_b : float Zmap.t = match Csp.make shell_a shell_b with | None -> Zmap.create 0 | Some shell_p -> begin (* Pre-computation of integral class indices *) let class_indices = Csp.zkey_array shell_p in let contracted_class = Array.make (Array.length class_indices) 0. in let a_minus_b = Csp.a_minus_b shell_p in let norm_coef_scales = Csp.norm_scales shell_p in (* Compute all integrals in the shell for each pair of significant shell pairs *) let sp = Csp.shell_pairs shell_p in for ab=0 to (Array.length sp - 1) do let coef_prod = (Csp.coefficients shell_p).(ab) in (* Screening on thr product of coefficients *) if (abs_float coef_prod) > 1.e-4*.cutoff then begin let center_pa = Psp.center_minus_a sp.(ab) in let expo_inv = (Csp.exponents_inv shell_p).(ab) in let expo_a = Ps.exponent (Psp.shell_a sp.(ab)) and expo_b = Ps.exponent (Psp.shell_b sp.(ab)) in let xyz_of_int k = match k with | 0 -> Co.X | 1 -> Co.Y | _ -> Co.Z in Array.iteri (fun i key -> let (angMomA,angMomB) = to_powers key in let ov a b k = let xyz = xyz_of_int k in Overlap_primitives.hvrr (a, b) expo_inv (Co.get xyz a_minus_b, Co.get xyz center_pa) in let f k = let xyz = xyz_of_int k in ov (Po.get xyz angMomA) (Po.get xyz angMomB) k and g k = let xyz = xyz_of_int k in let s1 = ov (Po.get xyz angMomA - 1) (Po.get xyz angMomB - 1) k and s2 = ov (Po.get xyz angMomA + 1) (Po.get xyz angMomB - 1) k and s3 = ov (Po.get xyz angMomA - 1) (Po.get xyz angMomB + 1) k and s4 = ov (Po.get xyz angMomA + 1) (Po.get xyz angMomB + 1) k and a = float_of_int_fast (Po.get xyz angMomA) and b = float_of_int_fast (Po.get xyz angMomB) in 0.5 *. a *. b *. s1 -. expo_a *. b *. s2 -. expo_b *. a *. s3 +. 2.0 *. expo_a *. expo_b *. s4 in let s = Array.init 3 f and k = Array.init 3 g in let norm = norm_coef_scales.(i) in let integral = chop norm (fun () -> k.(0)*.s.(1)*.s.(2) +. s.(0)*.k.(1)*.s.(2) +. s.(0)*.s.(1)*.k.(2) ) in contracted_class.(i) <- contracted_class.(i) +. coef_prod *. integral ) class_indices end done; let result = Zmap.create (Array.length contracted_class) in Array.iteri (fun i key -> Zmap.add result key contracted_class.(i)) class_indices; result end (** Create kinetic energy matrix *) let of_basis basis = let to_powers x = let open Zkey in match to_powers x with | Three x -> x | _ -> assert false in let n = Bs.size basis and shell = Bs.contracted_shells basis in let result = Matrix.create n n in for j=0 to (Array.length shell) - 1 do for i=0 to j do (* Compute all the integrals of the class *) let cls = contracted_class shell.(i) shell.(j) in Array.iteri (fun j_c powers_j -> let j_c = Cs.index shell.(j) + j_c + 1 in let xj = to_powers powers_j in Array.iteri (fun i_c powers_i -> let i_c = Cs.index shell.(i) + i_c + 1 in let xi = to_powers powers_i in let key = Zkey.of_powers_six xi xj in let value = try Zmap.find cls key with Not_found -> 0. in Matrix.set result i_c j_c value; Matrix.set result j_c i_c value; ) (Am.zkey_array (Singlet (Cs.ang_mom shell.(i)))) ) (Am.zkey_array (Singlet (Cs.ang_mom shell.(j)))) done; done; Matrix.detri_inplace result; result let of_basis_pair _first_basis _second_basis = failwith "Not implemented"