open Util open Constants open Powers open Coordinate exception NullPair (** In chop f g, evaluate g only if f is non zero, and return f *. (g ()) *) let chop f g = if (abs_float f) < cutoff then 0. else f *. (g ()) (** Horizontal and Vertical Recurrence Relations (HVRR) *) let hvrr_one_e (angMom_a, angMom_b) zero_m_array (expo_b) (expo_inv_p) (center_ab, center_pa, center_pc) map = let maxm = angMom_a.tot + angMom_b.tot in let maxsze = maxm+1 in let empty = Array.make maxsze 0. in let get_xyz angMom = match angMom with | { y=0 ; z=0 ; _ } -> X | { z=0 ; _ } -> Y | _ -> Z in (** Vertical recurrence relations *) let rec vrr angMom_a = let { x=ax ; y=ay ; z=az } = angMom_a in if ax < 0 || ay < 0 || az < 0 then raise Exit else match angMom_a.tot with | 0 -> zero_m_array | _ -> let key = Zkey.of_powers (Zkey.Three angMom_a) in try Zmap.find map key with | Not_found -> let result = let xyz = get_xyz angMom_a in let am = Powers.decr xyz angMom_a in let amxyz = Powers.get xyz am in if amxyz < 0 then empty else let f1 = Coordinate.get xyz center_pa and f2 = expo_inv_p *. (Coordinate.get xyz center_pc) in if amxyz < 1 then let v1 = vrr am in Array.init maxsze (fun m -> if m = maxm then (f1 *. v1.(m) ) else (f1 *. v1.(m) ) -. f2 *. v1.(m+1) ) else let v3 = let amm = Powers.decr xyz am in vrr amm in let v1 = vrr am in let f3 = (float_of_int amxyz) *. expo_inv_p *. 0.5 in Array.init maxsze (fun m -> f1 *. v1.(m) -. (if m = maxm then 0. else f2 *. v1.(m+1) ) +. f3 *. (v3.(m) -. if m = maxm then 0. else expo_inv_p *. v3.(m+1)) ) in Zmap.add map key result; result (** Horizontal recurrence relations *) and hrr angMom_a angMom_b = let { x=bx ; y=by ; z=bz } = angMom_b in if bx < 0 || by < 0 || bz < 0 then raise Exit else match angMom_b.tot with | 0 -> (vrr angMom_a).(0) | _ -> let xyz = get_xyz angMom_b in let bxyz = Powers.get xyz angMom_b in if (bxyz < 1) then 0. else let ap = Powers.incr xyz angMom_a in let bm = Powers.decr xyz angMom_b in let h1 = hrr ap bm in let f2 = Coordinate.get xyz center_ab in if abs_float f2 < cutoff then h1 else let h2 = hrr angMom_a bm in h1 +. f2 *. h2 in hrr angMom_a angMom_b (** Computes all the one-electron integrals of the contracted shell pair *) let contracted_class_shell_pair ~zero_m shell_p geometry : float Zmap.t = let shell_a = shell_p.ContractedShellPair.shell_a and shell_b = shell_p.ContractedShellPair.shell_b in let maxm = let open Angular_momentum in (to_int @@ Contracted_shell.totAngMom shell_a) + (to_int @@ Contracted_shell.totAngMom shell_b) in (* Pre-computation of integral class indices *) let class_indices = Angular_momentum.zkey_array (Angular_momentum.Doublet Contracted_shell.(totAngMom shell_a, totAngMom shell_b)) in let contracted_class = Array.make (Array.length class_indices) 0.; in (* Compute all integrals in the shell for each pair of significant shell pairs *) let norm_coef_scale_p = shell_p.ContractedShellPair.norm_coef_scale in for ab=0 to (Array.length shell_p.ContractedShellPair.shell_pairs - 1) do let b = shell_p.ContractedShellPair.shell_pairs.(ab).ShellPair.j in try begin let coef_prod = shell_p.ContractedShellPair.coef.(ab) in (** Screening on the product of coefficients *) if (abs_float coef_prod) < 1.e-4*.cutoff then raise NullPair; let expo_pq_inv = shell_p.ContractedShellPair.expo_inv.(ab) in let center_ab = shell_p.ContractedShellPair.center_ab in let center_p = shell_p.ContractedShellPair.shell_pairs.(ab).ShellPair.center in let center_pa = Coordinate.(center_p |- Contracted_shell.center shell_a) in for c=0 to Array.length geometry - 1 do let element, nucl_coord = geometry.(c) in let charge = Element.to_charge element |> Charge.to_float in let center_pc = Coordinate.(center_p |- nucl_coord ) in let norm_pq_sq = Coordinate.dot center_pc center_pc in let zero_m_array = zero_m ~maxm ~expo_pq_inv ~norm_pq_sq in match Contracted_shell.(totAngMom shell_a, totAngMom shell_b) with | Angular_momentum.(S,S) -> let integral = zero_m_array.(0) in contracted_class.(0) <- contracted_class.(0) -. coef_prod *. integral *. charge | _ -> let map = Zmap.create (2*maxm) in let norm_coef_scale = norm_coef_scale_p in (* Compute the integral class from the primitive shell quartet *) class_indices |> Array.iteri (fun i key -> let (angMomA,angMomB) = match Zkey.to_powers ~kind:Zkey.Kind_6 key with | Zkey.Six x -> x | _ -> assert false in let norm = norm_coef_scale.(i) in let coef_prod = coef_prod *. norm in let integral = hvrr_one_e (angMomA, angMomB) zero_m_array (Contracted_shell.expo shell_b b) (shell_p.ContractedShellPair.expo_inv.(ab)) (center_ab, center_pa, center_pc) map in contracted_class.(i) <- contracted_class.(i) -. coef_prod *. integral *. charge ) done end with NullPair -> () done; let result = Zmap.create (Array.length contracted_class) in Array.iteri (fun i key -> Zmap.add result key contracted_class.(i)) class_indices; result