open Lacaml.D type sparse_matrix = { m: int; n: int; v: Vector.t array; } type computed = { m: int; n: int; f: int -> int -> float; } type t = | Dense of Mat.t | Sparse of sparse_matrix | Computed of computed let epsilon = Constants.epsilon let is_computed = function | Computed _ -> true | _ -> false let is_sparse = function | Sparse _ -> true | _ -> false let is_dense = function | Dense _ -> true | _ -> false let dim1 = function | Dense m -> Mat.dim1 m | Sparse {m ; _} -> m | Computed {m ; _} -> m let dim2 = function | Dense m -> Mat.dim2 m | Sparse {n ; _} -> n | Computed {n ; _} -> n let check_bounds m n i j = if (i <= 0 || i > m || j <= 0 || j > n) then raise (Invalid_argument "Index out of bounds") let get = function | Dense m -> (fun i j -> m.{i,j}) | Sparse { m ; n ; v } -> (fun i j -> Vector.get v.(j-1) i) | Computed { m ; n ; f } -> (fun i j -> check_bounds m n i j ; f i j) let sparse_of_dense ?(threshold=epsilon) = function | Dense m' -> let m = Mat.dim1 m' and n = Mat.dim2 m' and v = Mat.to_col_vecs m' |> Array.map (fun v -> Vector.sparse_of_vec ~threshold v) in Sparse {m ; n ; v} | _ -> invalid_arg "Expected a dense matrix" let dense_of_sparse = function | Sparse {m ; n ; v} -> let m' = Array.map (fun v -> Vector.to_vec v) v |> Mat.of_col_vecs in Dense m' | _ -> invalid_arg "Expected a sparse matrix" let sparse_of_computed ?(threshold=epsilon) = function | Computed {m ; n ; f} -> Sparse { m ; n ; v=Array.init n (fun j -> Util.list_range 1 m |> List.map (fun i -> let x = f i (j+1) in if abs_float x > threshold then Some (i, x) else None) |> Util.list_some |> Vector.sparse_of_assoc_list m ) } | _ -> invalid_arg "Expected a computed matrix" let dense_of_computed x = dense_of_sparse @@ sparse_of_computed x let dense_of_mat m = Dense m let of_fun m n f = Computed {m ; n ; f} let rec to_vector_array ?(threshold=epsilon) = function | Sparse {m ; n ; v} -> v | Dense m -> to_vector_array (sparse_of_dense ~threshold (Dense m)) | Computed m -> to_vector_array (sparse_of_computed ~threshold (Computed m)) let identity n = Sparse { n ; m=n ; v = Array.init n (fun i -> Vector.sparse_of_assoc_list n [(i+1,1.0)]) } let sparse_of_mat ?(threshold=epsilon) m = dense_of_mat m |> sparse_of_dense ~threshold let sparse_of_vector_array v = let m = Array.fold_left (fun accu v' -> if Vector.dim v' <> accu then invalid_arg "Inconsistent dimension" else accu) (Vector.dim v.(0)) v and n = Array.length v in Sparse {m ; n ; v} let rec to_mat = function | Dense m -> m | Sparse m -> dense_of_sparse (Sparse m) |> to_mat | Computed m -> sparse_of_computed (Computed m) |> dense_of_sparse |> to_mat let transpose = function | Dense m -> Dense (Mat.transpose_copy m) | Sparse {m ; n ; v} -> begin let v' = Array.init m (fun i -> ref []) in Array.iteri (fun j v_j -> Vector.to_assoc_list v_j |> List.iter (fun (i, v_ij) -> v'.(i-1) := (j+1, v_ij) :: !(v'.(i-1)) ) ) v; let v' = Array.map (fun x -> Vector.sparse_of_assoc_list n (List.rev !x) ) v' in Sparse {m=n ; n=m ; v=v'} end | Computed {m ; n ; f} -> let f' i j = f j i in Computed { m=n ; n=m ; f=f' } let outer_product ?(threshold=epsilon) v1 v2 = match Vector.(is_dense v1, is_dense v2) with | (true, true) -> let v1 = Vector.to_vec v1 and v2 = Vector.to_vec v2 in let a = Mat.make0 (Vec.dim v1) (Vec.dim v2) in ger v1 v2 a; Dense a | (true, false) -> let v = Vector.to_vec v1 and v' = Vector.to_vec v2 in let v = Array.init (Vector.dim v2) (fun j -> Vec.map (fun x -> x *. v'.{j+1}) v |> Vector.sparse_of_vec) in Sparse {m=Vector.dim v1 ; n=Vector.dim v2 ; v} | (false, true) | (false, false) -> let v = Vector.to_assoc_list v1 and v' = Vector.to_vec v2 in let v = Array.init (Vector.dim v2) (fun j -> List.map (fun (i, x) -> let z = x *. v'.{j+1} in if abs_float z < threshold then None else Some (i, z) ) v |> Util.list_some |> Vector.sparse_of_assoc_list (Vector.dim v1) ) in Sparse {m=Vector.dim v1 ; n=Vector.dim v2 ; v} let rec mm ?(transa=`N) ?(transb=`N) ?(threshold=epsilon) a b = let f, f' = match transa, transb with | `N, `N -> dim2, dim1 | `T, `N -> dim1, dim1 | `T, `T -> dim1, dim2 | `N, `T -> dim2, dim2 in if f a <> f' b then Printf.sprintf "%d %d : Inconsistent dimensions" (f a) (f' b) |> invalid_arg; (* Dense x sparse *) let mmsp transa transb a b = let a = match transa with | `N -> Mat.transpose_copy a | `T -> a in let m' = Mat.dim2 a in let a = Mat.to_col_vecs a |> Array.map (fun v -> Vector.dense_of_vec v) in let {m ; n ; v} = if transb = `T then match transpose (Sparse b) with | Sparse x -> x | _ -> assert false else b in let v' = Array.map (fun b_j -> Array.map (fun a_i -> Vector.dot a_i b_j) a |> Vec.of_array |> Vector.sparse_of_vec ) v in Sparse {m=m' ; n ; v=v'} in (* Sparse x dense *) let spmm transa transb a b = let b = match transb with | `N -> b | `T -> Mat.transpose_copy b in let n' = Mat.dim2 b in let b = Mat.to_col_vecs b |> Array.map (fun v -> Vector.dense_of_vec v) in let m, n, v = if transa = `N then match transpose (Sparse a) with | Sparse {m ; n ; v} -> n, m, v | _ -> assert false else match Sparse a with | Sparse {m ; n ; v} -> n, m, v | _ -> assert false in let v' = Array.map (fun b_j -> Array.map (fun a_i -> Vector.dot a_i b_j) v |> Vec.of_array |> Vector.sparse_of_vec ) b in Sparse {m ; n=n' ; v=v'} in (* Sparse x Sparse *) let mmspmm transa transb a b = let {m ; n ; v} = if transb = `T then match transpose (Sparse b) with | Sparse x -> x | _ -> assert false else b in let m', n', v' = if transa = `N then match transpose (Sparse a) with | Sparse {m ; n ; v} -> n, m, v | _ -> assert false else match Sparse a with | Sparse {m ; n ; v} -> n, m, v | _ -> assert false in let v'' = Array.map (fun b_j -> Array.map (fun a_i -> Vector.dot a_i b_j) v' |> Vec.of_array |> Vector.sparse_of_vec ) v in Sparse {m=m' ; n=n ; v=v''} in let mmcc transa transb a b = let {m ; n ; f} = if transb = `T then match transpose (Computed b) with | Computed x -> x | _ -> assert false else b in let m', n', f' = if transa = `T then match transpose (Computed a) with | Computed {m ; n ; f} -> m, n, f | _ -> assert false else let {m ; n ; f} = a in m, n, f in if n' <> m then invalid_arg "Inconsistent dimensions"; let g i j = let result = ref 0. in for k=1 to m do let a = f k j in if a <> 0. then result := !result +. (f' i k) *. a ; done; !result in Computed {m=m' ; n=n ; f=g} in let mmccde transa transb a b = let m', n', f' = if transa = `T then match transpose (Computed a) with | Computed {m ; n ; f} -> m, n, f | _ -> assert false else let {m ; n ; f} = a in m, n, f in let m, n = match transb with | `N -> Mat.dim1 b , Mat.dim2 b | `T -> Mat.dim2 b , Mat.dim1 b in if n' <> m then invalid_arg "Inconsistent dimensions"; let matrix = Array.init n (fun j -> let bj = if transb = `T then (Mat.copy_row b (j+1)) else (Mat.to_col_vecs b).(j) in let accu = Vec.make0 m' in let v = Vec.make0 m' in let bj = Vec.to_array bj in Array.iteri (fun k a -> if a <> 0. then begin for i = 1 to m' do Bigarray.Array1.unsafe_set v i (f' i (k+1)); done; axpy ~alpha:a v accu end ) bj; accu ) |> Mat.of_col_vecs in Dense matrix in match a, b with | (Dense a), (Dense b) -> Dense (gemm ~transa ~transb a b) | (Sparse a), (Dense b) -> spmm transa transb a b | (Dense a), (Sparse b) -> mmsp transa transb a b | (Sparse a), (Sparse b) -> mmspmm transa transb a b | (Computed a), (Computed b) -> mmcc transa transb a b | (Computed a), (Dense b) -> mmccde transa transb a b | (Computed a), (Sparse _) -> let b = { m = dim1 b ; n = dim2 b ; f = get b } in mmcc transa transb a b |> sparse_of_computed ~threshold | _, (Computed _) -> begin match transa, transb with | `N, `N -> mm ~transa:`T ~transb:`T ~threshold b a | `N, `T -> mm ~transa:`N ~transb:`T ~threshold b a | `T, `N -> mm ~transa:`T ~transb:`N ~threshold b a | `T, `T -> mm ~transa:`N ~transb:`N ~threshold b a end |> transpose let mv ?(sparse=false) ?(trans=`N) ?(threshold=epsilon) a b = let f = match trans with | `N -> dim2 | `T -> dim1 in if f a <> Vector.dim b then invalid_arg "Inconsistent dimensions"; let spmv a b = let {m ; n ; v} = if trans = `N then match transpose (Sparse a) with | Sparse x -> x | _ -> assert false else a in Array.map (fun row_a -> Vector.dot row_a b) v |> Vec.of_array in let mv a b = let f_a = match trans with | `N -> (fun i -> Mat.copy_row a i) | `T -> (fun i -> Mat.col a i) in Vec.init (Mat.dim1 a) (fun i -> Vector.dense_of_vec (f_a i) |> Vector.dot b ) in let cmv a b = match trans with | `N -> Vec.init a.m (fun i -> let accu = ref 0. in for j=1 to a.n do accu := !accu +. a.f i j *. Vector.get b j done; !accu) | `T -> Vec.init a.m (fun i -> let accu = ref 0. in for j=1 to a.n do accu := !accu +. a.f j i *. Vector.get b j done; !accu) in let dense_result = match a, Vector.is_dense b with | Dense a, true -> gemv ~trans a (Vector.to_vec b) | Dense a, false -> mv a b | Sparse a, _ -> spmv a b | Computed a, _ -> cmv a b in if sparse then Vector.sparse_of_vec dense_result else Vector.dense_of_vec dense_result let rec op2 dense_op sparse_op a b = if dim1 a <> dim1 b || dim2 a <> dim2 b then failwith "Inconsistent dimensions"; match a, b with | (Dense a), (Dense b) -> Dense (dense_op a b) | (Dense _), (Sparse _) -> op2 dense_op sparse_op (sparse_of_dense a) b | (Sparse _), (Dense _) -> op2 dense_op sparse_op a (sparse_of_dense b) | (Sparse a), (Sparse b) -> Sparse { m=a.m ; n=a.n ; v = Array.map2 sparse_op a.v b.v } | _ -> failwith "Not implemented" let add = op2 (fun a b -> Mat.add a b) (fun a b -> Vector.add a b) let sub = op2 (fun a b -> Mat.sub a b) (fun a b -> Vector.sub a b) let scale f = function | Dense a -> let b = lacpy a in (Mat.scal f b ; Dense b) | Sparse a -> Sparse { a with v = if f = 1.0 then a.v else Array.map (fun v -> Vector.scale f v) a.v } | _ -> failwith "Not implemented" let frobenius_norm = function | Dense a -> lange ~norm:`F a | Sparse a -> Array.fold_left (fun accu v -> accu +. Vector.dot v v) 0. a.v |> sqrt | _ -> failwith "Not implemented" let split_cols nrows = function | Dense a -> begin Mat.to_col_vecs a |> Array.to_list |> Util.list_pack nrows |> List.map (fun l -> Dense (Mat.of_col_vecs @@ Array.of_list l) ) end | Sparse a -> begin Array.to_list a.v |> Util.list_pack nrows |> List.map Array.of_list |> List.map (fun v -> Sparse { m=a.m ; n= Array.length v ; v }) end | Computed a -> begin Util.list_range 0 (a.n-1) |> Util.list_pack nrows |> List.map Array.of_list |> List.map (fun v -> Computed { m=a.m ; n= Array.length v ; f = (fun i j -> a.f i (j+v.(0)) ) }) end let join_cols l = let rec aux_dense accu = function | [] -> Dense (Mat.of_col_vecs_list (List.concat accu)) | (Dense a) :: rest -> aux_dense ((Mat.to_col_vecs_list a) :: accu) rest | _ -> assert false and aux_sparse m n accu = function | [] -> Sparse { m ; n ; v=Array.of_list (List.concat accu) } | (Sparse a) :: rest -> aux_sparse a.m (n+a.n) ((Array.to_list a.v)::accu) rest | _ -> assert false and aux = function | [] -> Sparse { m=0 ; n=0 ; v=[| |] } | (Dense a) :: rest -> aux_dense [] ((Dense a) :: rest) | (Sparse a) :: rest -> aux_sparse 0 0 [] ((Sparse a) :: rest) | (Computed a) :: rest -> aux_sparse 0 0 [] (List.map sparse_of_computed ( (Computed a) :: rest )) in aux (List.rev l) let ax_eq_b_conj_grad ?x a b = (* /!\ : A needs to be positive definite and symmetric *) let x = match x with | Some x0 -> x0 | None -> b in let r = Vector.sub b (mv a x) in let p = r in let rsold = Vector.dot r r in let rec aux rsold r p x = function | 0 -> x | i -> let ap = mv a p in let alpha = rsold /. (Vector.dot p ap) in let x = Vector.add x (Vector.scale alpha p) in let r = Vector.sub r (Vector.scale alpha ap) in let rsnew = Vector.dot r r in if rsnew < Constants.epsilon then x else let p = Vector.add r (Vector.scale (rsnew /. (rsold +. 1.e-12) ) p) in (aux [@tailcall]) rsnew r p x (i-1) in aux rsold r p x (Vector.dim b *2) let rec ax_eq_b ?(trans=`N) a b = match a, b with | (Dense a), (Dense b) -> let a = lacpy a in let x = lacpy b in (getrs ~trans a x; Dense x) | (Dense _), (Sparse _) -> let b = dense_of_sparse b in ax_eq_b ~trans a b | _ -> let ata, atb = if trans = `N then mm ~transa:`T a a, mm ~transa:`T a b else mm ~transa:`N a a, mm ~transa:`N a b in Sparse { m=dim1 b ; n=dim2 b ; v=Array.map (fun v -> ax_eq_b_conj_grad ata v) (to_vector_array atb) } (* ------- Parallel routines ---------- *) let parallel_mm ?(transa=`N) ?(transb=`N) ?(threshold=epsilon) a b = let n = match transa with | `N -> dim2 a | `T -> dim1 a in let n = n / (Parallel.size * 7) in let b = match transb with | `T -> transpose b | `N -> b in split_cols n b |> Stream.of_list |> Farm.run ~ordered:true ~f:(fun b -> match a, b with | Computed _, Computed _ -> mm ~transa ~threshold a b |> sparse_of_computed ~threshold | _ -> mm ~transa ~threshold a b ) |> Util.stream_to_list |> join_cols (* ------------ Printers ------------ *) let rec pp ppf = function | Dense m -> Util.pp_matrix ppf m | Sparse m -> pp ppf @@ dense_of_sparse (Sparse m) | Computed m -> pp ppf @@ dense_of_computed (Computed m) (* ---------- Unit tests ------------ *) let test_case () = let d1 = 30 and d2 = 40 and d3 = 50 in let x1 = Mat.map (fun x -> if abs_float x < 0.6 then 0. else x) (Mat.random d1 d2) and x2 = Mat.map (fun x -> if abs_float x < 0.3 then 0. else x) (Mat.random d2 d3) in let m1 = dense_of_mat x1 and m2 = dense_of_mat x2 in let m1_s = sparse_of_mat x1 and m2_s = sparse_of_mat x2 in let norm_diff m1 m2 = (Mat.sub (to_mat m1) (to_mat m2) |> Mat.syrk_trace) in let test_dimensions () = Alcotest.(check int) "dim1 1" d1 (dim1 m1 ); Alcotest.(check int) "dim1 2" d1 (dim1 m1_s); Alcotest.(check int) "dim2 3" d2 (dim2 m1 ); Alcotest.(check int) "dim2 4" d2 (dim2 m1_s); Alcotest.(check int) "dim1 5" d2 (dim1 m2 ); Alcotest.(check int) "dim1 6" d2 (dim1 m2_s); Alcotest.(check int) "dim2 7" d3 (dim2 m2 ); Alcotest.(check int) "dim2 8" d3 (dim2 m2_s); in let test_conversion () = Alcotest.(check bool) "sparse -> dense 1" true (dense_of_sparse m1_s = m1 ); Alcotest.(check bool) "sparse -> dense 2" true (dense_of_sparse m2_s = m2 ); Alcotest.(check bool) "dense -> sparse 1" true (sparse_of_dense m1 = m1_s); Alcotest.(check bool) "dense -> sparse 3" true (sparse_of_dense m2 = m2_s); in let test_transpose () = let m1t = Mat.transpose_copy x1 |> dense_of_mat and m2t = Mat.transpose_copy x2 |> dense_of_mat in Alcotest.(check bool) "dense 1" true (transpose m1 = m1t); Alcotest.(check bool) "dense 2" true (transpose m2 = m2t); Alcotest.(check bool) "sparse 1" true (transpose m1_s = sparse_of_dense m1t); Alcotest.(check bool) "sparse 2" true (transpose m2_s = sparse_of_dense m2t); in let test_outer () = let x1 = Vec.init d1 (fun i -> float_of_int i) and x2 = Vec.init d2 (fun i -> float_of_int i -. 0.3) in let v1 = Vector.dense_of_vec x1 and v2 = Vector.dense_of_vec x2 in let v1_s = Vector.sparse_of_vec x1 and v2_s = Vector.sparse_of_vec x2 in let m1 = Dense (Mat.init_cols d1 d2 (fun i j -> (float_of_int i) *. (float_of_int j -. 0.3))) in let m1_s = sparse_of_dense m1 in Alcotest.(check (float 1.e-10)) "dense dense " 0. (norm_diff m1 (outer_product v1 v2)); Alcotest.(check (float 1.e-10)) "sparse dense " 0. (norm_diff m1_s (outer_product v1_s v2)); Alcotest.(check (float 1.e-10)) "dense sparse" 0. (norm_diff m1_s (outer_product v1 v2_s)); Alcotest.(check (float 1.e-10)) "sparse sparse" 0. (norm_diff m1_s (outer_product v1_s v2_s)); in let test_add_sub () = let x2 = Mat.map (fun x -> if abs_float x < 0.3 then 0. else x) (Mat.random d1 d2) in let m2 = dense_of_mat x2 in let m3 = Mat.add x1 x2 |> dense_of_mat in let m4 = Mat.sub x1 x2 |> dense_of_mat in let m2_s = sparse_of_mat x2 in let m3_s = Mat.add x1 x2 |> sparse_of_mat in let m4_s = Mat.sub x1 x2 |> sparse_of_mat in Alcotest.(check (float 1.e-10)) "dense dense 1" 0. (norm_diff (add m1 m2) m3); Alcotest.(check (float 1.e-10)) "dense dense 2" 0. (norm_diff (sub m1 m2) m4); Alcotest.(check (float 1.e-10)) "dense sparse 3" 0. (norm_diff (add m1 m2_s) m3_s); Alcotest.(check (float 1.e-10)) "dense sparse 4" 0. (norm_diff (sub m1 m2_s) m4_s); Alcotest.(check (float 1.e-10)) "sparse dense 5" 0. (norm_diff (add m1_s m2) m3); Alcotest.(check (float 1.e-10)) "sparse dense 6" 0. (norm_diff (sub m1_s m2) m4); Alcotest.(check (float 1.e-10)) "dense sparse 7" 0. (norm_diff (add m1_s m2_s) m3_s); Alcotest.(check (float 1.e-10)) "dense sparse 8" 0. (norm_diff (sub m1_s m2_s) m4_s); Alcotest.(check (float 1.e-10)) "dense sparse 9" (frobenius_norm m1_s) (frobenius_norm m1); in let test_mv () = let y = Vec.random d2 in let z = Vec.random d1 in let x3 = gemv x1 y in let x4 = gemv ~trans:`T x1 z in let v = Vector.dense_of_vec y in let v2 = Vector.dense_of_vec z in let v3 = Vector.dense_of_vec x3 in let v4 = Vector.dense_of_vec x4 in let v_s = Vector.sparse_of_vec y in let v2_s = Vector.sparse_of_vec z in let norm_diff v1 v2 = Vec.sub (Vector.to_vec v1) (Vector.to_vec v2) |> nrm2 in Alcotest.(check (float 1.e-10)) "dense dense 1" 0. (norm_diff (mv m1 v) v3); Alcotest.(check (float 1.e-10)) "dense dense 2" 0. (norm_diff (mv ~trans:`T m1 v2) v4); Alcotest.(check (float 1.e-10)) "dense sparse 3" 0. (norm_diff (mv m1 v_s) v3); Alcotest.(check (float 1.e-10)) "dense sparse 4" 0. (norm_diff (mv ~trans:`T m1 v2_s) v4); Alcotest.(check (float 1.e-10)) "sparse dense 5" 0. (norm_diff (mv m1_s v) v3); Alcotest.(check (float 1.e-10)) "sparse dense 6" 0. (norm_diff (mv ~trans:`T m1_s v2) v4); Alcotest.(check (float 1.e-10)) "sparse sparse 7" 0. (norm_diff (mv m1_s v_s) v3); Alcotest.(check (float 1.e-10)) "sparse sparse 8" 0. (norm_diff (mv ~trans:`T m1_s v2_s) v4); in let test_mm () = let x3 = gemm x1 x2 in let m3 = dense_of_mat x3 and m3_s = sparse_of_mat x3 and m4 = dense_of_mat x1 |> transpose and m4_s = sparse_of_mat x1 |> transpose and m5 = dense_of_mat x2 |> transpose and m5_s = sparse_of_mat x2 |> transpose in let c1 = of_fun (Mat.dim1 x1) (Mat.dim2 x1) (fun i j -> x1.{i,j}) in let c2 = of_fun (Mat.dim1 x2) (Mat.dim2 x2) (fun i j -> x2.{i,j}) in let c3 = of_fun (Mat.dim1 x3) (Mat.dim2 x3) (fun i j -> x3.{i,j}) in let c4 = of_fun (dim1 m4) (dim2 m4) (fun i j -> get m4 i j ) in let c5 = of_fun (dim1 m5) (dim2 m5) (fun i j -> get m5 i j ) in Alcotest.(check (float 1.e-10)) "dense dense 0" 0. (norm_diff m3 c3); Alcotest.(check (float 1.e-10)) "dense dense 1" 0. (norm_diff (mm m1 m2) m3); Alcotest.(check (float 1.e-10)) "dense dense 2" 0. (norm_diff (mm c1 c2) m3); Alcotest.(check (float 1.e-10)) "dense dense 3" 0. (norm_diff (mm c1 m2) m3); Alcotest.(check (float 1.e-10)) "dense dense 4" 0. (norm_diff (mm c1 m2_s) m3); Alcotest.(check (float 1.e-10)) "dense dense 5" 0. (norm_diff (mm m1 c2) m3); Alcotest.(check (float 1.e-10)) "dense dense 6" 0. (norm_diff (mm m1_s c2) m3); Alcotest.(check (float 1.e-10)) "dense dense 7" 0. (norm_diff (mm ~transa:`T m4 m2) m3); Alcotest.(check (float 1.e-10)) "dense dense 8" 0. (norm_diff (mm ~transa:`T c4 m2) m3); Alcotest.(check (float 1.e-10)) "dense dense 9" 0. (norm_diff (mm ~transb:`T m1 m5) m3); Alcotest.(check (float 1.e-10)) "dense dense 10" 0. (norm_diff (mm ~transb:`T m1 c5) m3); Alcotest.(check (float 1.e-10)) "dense dense 11" 0. (norm_diff (mm ~transa:`T ~transb:`T m2 m1) (transpose m3)); Alcotest.(check (float 1.e-10)) "dense sparse 12" 0. (norm_diff (mm m1 m2_s) m3_s); Alcotest.(check (float 1.e-10)) "dense sparse 13" 0. (norm_diff (mm ~transa:`T m4 m2_s) m3_s); Alcotest.(check (float 1.e-10)) "dense sparse 14" 0. (norm_diff (mm ~transa:`T c4 m2_s) m3_s); Alcotest.(check (float 1.e-10)) "dense sparse 15" 0. (norm_diff (mm ~transb:`T m1 m5_s) m3_s); Alcotest.(check (float 1.e-10)) "dense sparse 16" 0. (norm_diff (transpose (mm m2 m1_s ~transa:`T ~transb:`T)) m3_s); Alcotest.(check (float 1.e-10)) "sparse dense 17" 0. (norm_diff (mm m1_s m2) m3_s); Alcotest.(check (float 1.e-10)) "sparse dense 18" 0. (norm_diff (mm ~transa:`T m4_s m2) m3_s); Alcotest.(check (float 1.e-10)) "sparse dense 19" 0. (norm_diff (mm ~transb:`T m1_s m5) m3_s); Alcotest.(check (float 1.e-10)) "sparse dense 20" 0. (norm_diff (mm ~transb:`T m1_s c5) m3_s); Alcotest.(check (float 1.e-10)) "sparse dense 21" 0. (norm_diff (transpose (mm m2_s m1 ~transa:`T ~transb:`T)) m3_s); Alcotest.(check (float 1.e-10)) "sparse sparse 22" 0. (norm_diff (mm m1_s m2_s) m3_s); Alcotest.(check (float 1.e-10)) "sparse sparse 23" 0. (norm_diff (mm ~transa:`T m4_s m2_s) m3_s); Alcotest.(check (float 1.e-10)) "sparse sparse 24" 0. (norm_diff (mm ~transb:`T m1_s m5_s) m3_s); Alcotest.(check (float 1.e-10)) "sparse sparse 25" 0. (norm_diff (transpose (mm m2_s m1_s ~transa:`T ~transb:`T)) m3_s); in let test_solve () = let x1 = Mat.map (fun x -> if abs_float x < 0.6 then 0. else x) (Mat.random 30 30) and x2 = Mat.map (fun x -> if abs_float x < 0.3 then 0. else x) (Mat.random 30 5) in let m1 = dense_of_mat x1 and m2 = dense_of_mat x2 in let m1_s = sparse_of_mat x1 and m2_s = sparse_of_mat x2 in let a = m1 and b = m2 in let x = ax_eq_b a b in Alcotest.(check (float 1.e-10)) "dense dense 1" 0. (norm_diff (mm a x) b); let a = m1 and b = m2_s in let x = ax_eq_b a b in Alcotest.(check (float 1.e-10)) "dense sparse 2" 0. (norm_diff (mm a x) b); let a = m1_s and b = m2 in let x = ax_eq_b a b in Alcotest.(check (float 1.e-10)) "sparse dense 3" 0. (norm_diff (mm a x) b); let a = m1_s and b = m2_s in let x = ax_eq_b a b in Alcotest.(check (float 1.e-10)) "sparse sparse 4" 0. (norm_diff (mm a x) b); in let test_split_join () = let m1_split = split_cols 7 m1 in let m1_s_split = split_cols 7 m1_s in let m2 = join_cols m1_split in let m2_s = join_cols m1_s_split in Alcotest.(check int) "length" 6 (List.length m1_split); Alcotest.(check int) "length" 6 (List.length m1_s_split); Alcotest.(check bool) "join" true (m1 = m2); Alcotest.(check bool) "join" true (m1_s = m2_s); in [ "Conversion", `Quick, test_conversion; "Dimensions", `Quick, test_dimensions; "Transposition", `Quick, test_transpose; "Outer product", `Quick, test_outer; "Add sub", `Quick, test_add_sub; "Matrix Vector", `Quick, test_mv; "Matrix Matrix", `Quick, test_mm; "Linear solve", `Quick, test_solve; "split_join", `Quick, test_split_join; ]