open Util open Lacaml.D open Bigarray open Powers open Coordinate let cutoff = Constants.cutoff let cutoff2 = cutoff *. cutoff exception NullQuartet exception Found let at_least_one_valid arr = try Array.iter (fun x -> if (abs_float x > cutoff) then raise Found) arr ; false with Found -> true (** Horizontal and Vertical Recurrence Relations (HVRR) *) let hvrr_two_e_vector (angMom_a, angMom_b, angMom_c, angMom_d) zero_m_array (expo_b, expo_d) (expo_inv_p, expo_inv_q) (center_ab, center_cd, center_pq) map_1d map_2d np nq = let get_xyz angMom = match angMom with | { y=0 ; z=0 ; _ } -> X | { z=0 ; _ } -> Y | _ -> Z in (** Vertical recurrence relations *) let rec vrr0_v m angMom_a = match angMom_a.tot with | 0 -> zero_m_array.(m) | _ -> let key = Zkey.of_powers (Zkey.Three angMom_a) in try Zmap.find map_1d.(m) key with | Not_found -> let result = let xyz = get_xyz angMom_a in let am = Powers.decr xyz angMom_a in let cab = Coordinate.get xyz center_ab in let p0 = vrr0_v (m+1) am in let result = Array.make_matrix np nq 0. in begin if abs_float cab >= cutoff then let v0 = vrr0_v m am in Array.iteri (fun l result_l -> let f0 = -. expo_b.(l) *. expo_inv_p.(l) *. cab and v0_l = v0.(l) in Array.iteri (fun k v0_lk -> result_l.(k) <- v0_lk *. f0) v0_l ) result end; let amxyz = Powers.get xyz am in if amxyz < 1 then Array.iteri (fun l result_l -> let expo_inv_p_l = expo_inv_p.(l) and center_pq_xyz_l = (center_pq xyz).(l) and result_l = result.(l) and p0_l = p0.(l) in Array.iteri (fun k p0_lk -> result_l.(k) <- result_l.(k) +. expo_inv_p_l *. center_pq_xyz_l.(k) *. p0_lk ) p0_l ) result else begin let amm = Powers.decr xyz am in let v1 = vrr0_v m amm in let v2 = vrr0_v (m+1) amm in let amxyz = float_of_int amxyz in Array.iteri (fun l result_l -> let f = amxyz *. expo_inv_p.(l) *. 0.5 and expo_inv_p_l = expo_inv_p.(l) and center_pq_xyz_l = (center_pq xyz).(l) and v1_l = v1.(l) and v2_l = v2.(l) and result_l = result.(l) in Array.iteri (fun k p0_lk -> result_l.(k) <- result_l.(k) +. expo_inv_p_l *. center_pq_xyz_l.(k) *. p0_lk +. f *. (v1_l.(k) +. v2_l.(k) *. expo_inv_p_l) ) p0.(l) ) result end; result in Zmap.add map_1d.(m) key result; result and vrr_v m angMom_a angMom_c = match (angMom_a.tot, angMom_c.tot) with | (i,0) -> Some (vrr0_v m angMom_a) | (_,_) -> let key = Zkey.of_powers (Zkey.Six (angMom_a, angMom_c)) in try Zmap.find map_2d.(m) key with | Not_found -> let result = begin let xyz = get_xyz angMom_c in let cm = Powers.decr xyz angMom_c in let axyz = Powers.get xyz angMom_a in let do_compute = ref false in let v1 = let f = -. (Coordinate.get xyz center_cd) in let f1 = Array.init nq (fun k -> let x = expo_d.(k) *. expo_inv_q.(k) *. f in if ( (not !do_compute) && (abs_float x > cutoff) ) then do_compute := true; x) in if (!do_compute) then match vrr_v m angMom_a cm with | None -> None | Some v1 -> begin Some (Array.init np (fun l -> let v1_l = v1.(l) in Array.mapi (fun k f1k -> v1_l.(k) *. f1k) f1 ) ) end else None in let v2 = let f2 = Array.init np (fun l -> let cpq_l = (center_pq xyz).(l) in Array.init nq (fun k -> let x = expo_inv_q.(k) *. cpq_l.(k) in if (!do_compute) then x else (if abs_float x > cutoff then do_compute := true ; x) ) ) in if (!do_compute) then match vrr_v (m+1) angMom_a cm with | None -> None | Some v2 -> begin for l=0 to np-1 do let f2_l = f2.(l) and v2_l = v2.(l) in for k=0 to nq-1 do f2_l.(k) <- -. v2_l.(k) *. f2_l.(k) done done; Some f2 end else None in let p1 = match v1, v2 with | None, None -> None | None, Some v2 -> Some v2 | Some v1, None -> Some v1 | Some v1, Some v2 -> begin for l=0 to np-1 do let v1_l = v1.(l) and v2_l = v2.(l) in for k=0 to nq-1 do v2_l.(k) <- v2_l.(k) +. v1_l.(k) done done; Some v2 end in let cxyz = Powers.get xyz angMom_c in let p2 = if cxyz < 2 then p1 else let cmm = Powers.decr xyz cm in let fcm = (float_of_int (cxyz-1)) *. 0.5 in let f1 = Array.init nq (fun k -> let x = fcm *. expo_inv_q.(k) in if (!do_compute) then x else (if abs_float x > cutoff then do_compute := true ; x) ) in let v1 = if (!do_compute) then match vrr_v m angMom_a cmm with | None -> None | Some v1 -> begin let result = Array.make_matrix np nq 0. in for l=0 to np-1 do let v1_l = v1.(l) and result_l = result.(l) in for k=0 to nq-1 do result_l.(k) <- v1_l.(k) *. f1.(k) done; done; Some result end else None in let v3 = let f2 = Array.init nq (fun k -> let x = expo_inv_q.(k) *. f1.(k) in if (!do_compute) then x else (if abs_float x > cutoff then do_compute := true ; x) ) in if (!do_compute) then match vrr_v (m+1) angMom_a cmm with | None -> None | Some v3 -> begin let result = Array.make_matrix np nq 0. in for l=0 to np-1 do let v3_l = v3.(l) and result_l = result.(l) in for k=0 to nq-1 do result_l.(k) <- v3_l.(k) *. f2.(k) done done; Some result end else None in match p1, v1, v3 with | None, None, None -> None | Some p1, None, None -> Some p1 | None, Some v1, None -> Some v1 | None, None, Some v3 -> Some v3 | Some p1, Some v1, Some v3 -> begin for l=0 to np-1 do let v3_l = v3.(l) and v1_l = v1.(l) and p1_l = p1.(l) in for k=0 to nq-1 do v3_l.(k) <- p1_l.(k) +. v1_l.(k) +. v3_l.(k) done done; Some v3 end | Some p1, Some v1, None -> begin for l=0 to np-1 do let v1_l = v1.(l) and p1_l = p1.(l) in for k=0 to nq-1 do p1_l.(k) <- v1_l.(k) +. p1_l.(k) done done; Some p1 end | Some p1, None, Some v3 -> begin for l=0 to np-1 do let v3_l = v3.(l) and p1_l = p1.(l) in for k=0 to nq-1 do p1_l.(k) <- p1_l.(k) +. v3_l.(k) done done; Some p1 end | None , Some v1, Some v3 -> begin for l=0 to np-1 do let v3_l = v3.(l) and v1_l = v1.(l) in for k=0 to nq-1 do v3_l.(k) <- v1_l.(k) +. v3_l.(k) done done; Some v3 end in if (axyz < 1) || (cxyz < 1) then p2 else let am = Powers.decr xyz angMom_a in let v = vrr_v (m+1) am cm in match (p2, v) with | None, None -> None | Some p2, None -> Some p2 | _, Some v -> begin let p2 = match p2 with | None -> Array.make_matrix np nq 0. | Some p2 -> p2 in for l=0 to np-1 do let fa = (float_of_int axyz) *. expo_inv_p.(l) *. 0.5 in let p2_l = p2.(l) and v_l = v.(l) in for k=0 to nq-1 do p2_l.(k) <- p2_l.(k) -. fa *. expo_inv_q.(k) *. v_l.(k) done done; Some p2 end end in Zmap.add map_2d.(m) key result; result (** Horizontal recurrence relations *) and hrr0_v angMom_a angMom_b angMom_c = match angMom_b.tot with | 0 -> begin match (angMom_a.tot, angMom_c.tot) with | (0,0) -> Array.fold_left (fun accu c -> accu +. Array.fold_left (+.) 0. c) 0. zero_m_array.(0) | (_,_) -> begin match vrr_v 0 angMom_a angMom_c with | Some matrix -> Array.fold_left (fun accu c -> accu +. Array.fold_left (+.) 0. c) 0. matrix | None -> 0. end end | 1 -> let xyz = get_xyz angMom_b in let ap = Powers.incr xyz angMom_a in let f = Coordinate.get xyz center_ab in let v1 = match vrr_v 0 ap angMom_c with | Some matrix -> Array.fold_left (fun accu c -> accu +. Array.fold_left (+.) 0. c) 0. matrix | None -> 0. in if (abs_float f < cutoff) then v1 else let v2 = match vrr_v 0 angMom_a angMom_c with | Some matrix -> Array.fold_left (fun accu c -> accu +. Array.fold_left (+.) 0. c) 0. matrix | None -> 0. in v1 +. v2 *. f | _ -> let xyz = get_xyz angMom_b in let bxyz = Powers.get xyz angMom_b in if (bxyz < 0) then 0. else let ap = Powers.incr xyz angMom_a in let bm = Powers.decr xyz angMom_b in let h1 = hrr0_v ap bm angMom_c in let f = Coordinate.get xyz center_ab in if abs_float f < cutoff then h1 else let h2 = hrr0_v angMom_a bm angMom_c in h1 +. h2 *. f and hrr_v angMom_a angMom_b angMom_c angMom_d = match (angMom_b.tot, angMom_d.tot) with | (_,0) -> if angMom_b.tot = 0 then begin match vrr_v 0 angMom_a angMom_c with | Some matrix -> Array.fold_left (fun accu c -> accu +. Array.fold_left (+.) 0. c) 0. matrix | None -> 0. end else hrr0_v angMom_a angMom_b angMom_c | (_,_) -> let xyz = get_xyz angMom_d in let cp = Powers.incr xyz angMom_c in let dm = Powers.decr xyz angMom_d in let h1 = hrr_v angMom_a angMom_b cp dm in let f = Coordinate.get xyz center_cd in if abs_float f < cutoff then h1 else let h2 = hrr_v angMom_a angMom_b angMom_c dm in h1 +. f *. h2 in hrr_v angMom_a angMom_b angMom_c angMom_d let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q : float Zmap.t = let shell_a = shell_p.ContractedShellPair.shell_a and shell_b = shell_p.ContractedShellPair.shell_b and shell_c = shell_q.ContractedShellPair.shell_a and shell_d = shell_q.ContractedShellPair.shell_b and sp = shell_p.ContractedShellPair.shell_pairs and sq = shell_q.ContractedShellPair.shell_pairs in let maxm = shell_p.ContractedShellPair.totAngMomInt + shell_q.ContractedShellPair.totAngMomInt in (* Pre-computation of integral class indices *) let class_indices = Angular_momentum.zkey_array (Angular_momentum.Quartet Contracted_shell.(totAngMom shell_a, totAngMom shell_b, totAngMom shell_c, totAngMom shell_d)) in let contracted_class = Array.make (Array.length class_indices) 0.; in let monocentric = shell_p.ContractedShellPair.monocentric && shell_q.ContractedShellPair.monocentric && Contracted_shell.center shell_p.ContractedShellPair.shell_a = Contracted_shell.center shell_q.ContractedShellPair.shell_a in (** Screening on the product of coefficients *) let coef_max_p = Array.fold_left (fun accu x -> if (abs_float x) > accu then (abs_float x) else accu) 0. shell_p.ContractedShellPair.coef and coef_max_q = Array.fold_left (fun accu x -> if (abs_float x) > accu then (abs_float x) else accu) 0. shell_q.ContractedShellPair.coef in let rec build_list cutoff vec accu = function | -1 -> Array.of_list accu | k -> build_list cutoff vec ( if (abs_float vec.(k) > cutoff) then (k::accu) else accu ) (k-1) in let p_list = let vec = shell_p.ContractedShellPair.coef in build_list (cutoff /. coef_max_q) vec [] (Array.length vec - 1) and q_list = let vec = shell_q.ContractedShellPair.coef in build_list (cutoff /. coef_max_p) vec [] (Array.length vec - 1) in let np, nq = Array.length p_list, Array.length q_list in let filter_p vec = Array.init np (fun k -> vec.(p_list.(k))) and filter_q vec = Array.init nq (fun k -> vec.(q_list.(k))) in let sp = filter_p sp and sq = filter_q sq in (* Compute all integrals in the shell for each pair of significant shell pairs *) begin match Contracted_shell.(totAngMom shell_a, totAngMom shell_b, totAngMom shell_c, totAngMom shell_d) with | Angular_momentum.(S,S,S,S) -> contracted_class.(0) <- begin try let expo_inv_p = Vec.init np (fun ab -> sp.(ab-1).ShellPair.expo_inv) and expo_inv_q = Vec.init nq (fun cd -> sq.(cd-1).ShellPair.expo_inv) in let coef = let result = Mat.make0 nq np in Lacaml.D.ger (Vec.of_array @@ filter_q shell_q.ContractedShellPair.coef) (Vec.of_array @@ filter_p shell_p.ContractedShellPair.coef) result; result in let zm_array = Mat.init_cols np nq (fun i j -> try if (abs_float coef.{j,i} ) < 1.e-3*.cutoff then raise NullQuartet; let expo_pq_inv = expo_inv_p.{i} +. expo_inv_q.{j} in let center_pq = sp.(i-1).ShellPair.center |- sq.(j-1).ShellPair.center in let norm_pq_sq = Coordinate.dot center_pq center_pq in let zero_m_array = zero_m ~maxm:0 ~expo_pq_inv ~norm_pq_sq in zero_m_array.(0) with NullQuartet -> 0. ) in Mat.gemm_trace zm_array coef with (Invalid_argument _) -> 0. end | _ -> let coef = let cp = filter_p shell_p.ContractedShellPair.coef and cq = filter_q shell_q.ContractedShellPair.coef in Array.init np (fun l -> Array.init nq (fun k -> cq.(k) *. cp.(l)) ) in let expo_inv_p = Array.map (fun shell_ab -> shell_ab.ShellPair.expo_inv) sp and expo_inv_q = Array.map (fun shell_cd -> shell_cd.ShellPair.expo_inv) sq in let expo_b = Array.map (fun shell_ab -> Contracted_shell.expo shell_b shell_ab.ShellPair.j) sp and expo_d = Array.map (fun shell_cd -> Contracted_shell.expo shell_d shell_cd.ShellPair.j) sq in let norm_coef_scale_p = shell_p.ContractedShellPair.norm_coef_scale in let center_pq = let result = Array.init 3 (fun xyz -> Array.init np (fun ab -> let shell_ab = sp.(ab) in Array.init nq (fun cd -> let shell_cd = sq.(cd) in let cpq = shell_ab.ShellPair.center |- shell_cd.ShellPair.center in match xyz with | 0 -> Coordinate.get X cpq; | 1 -> Coordinate.get Y cpq; | 2 -> Coordinate.get Z cpq; | _ -> assert false ) ) ) in function | X -> result.(0) | Y -> result.(1) | Z -> result.(2) in let zero_m_array = let result = Array.init (maxm+1) (fun _ -> Array.init np (fun _ -> Array.make nq 0. ) ) in let empty = Array.make (maxm+1) 0. in Array.iteri (fun ab shell_ab -> let zero_m_array_tmp = Array.mapi (fun cd shell_cd -> if (abs_float coef.(ab).(cd) < cutoff) then empty else let expo_pq_inv = expo_inv_p.(ab) +. expo_inv_q.(cd) in let norm_pq_sq = let x = (center_pq X).(ab).(cd) and y = (center_pq Y).(ab).(cd) and z = (center_pq Z).(ab).(cd) in x *. x +. y *. y +. z *. z in zero_m ~maxm ~expo_pq_inv ~norm_pq_sq ) sq in (* Transpose result *) for m=0 to maxm do for cd=0 to nq-1 do result.(m).(ab).(cd) <- zero_m_array_tmp.(cd).(m) *. coef.(ab).(cd) done done ) sp; result in let norm = let norm_coef_scale_q = shell_q.ContractedShellPair.norm_coef_scale in Array.to_list norm_coef_scale_p |> List.map (fun v1 -> Array.map (fun v2 -> v1 *. v2) norm_coef_scale_q) |> Array.concat in let map_1d = Array.init (maxm+1) (fun _ -> Zmap.create (4*maxm)) and map_2d = Array.init (maxm+1) (fun _ -> Zmap.create (Array.length class_indices)) in (* Compute the integral class from the primitive shell quartet *) Array.iteri (fun i key -> let (angMom_a,angMom_b,angMom_c,angMom_d) = match Zkey.to_powers ~kind:Zkey.Kind_12 key with | Zkey.Twelve x -> x | _ -> assert false in try if monocentric then begin if ( ((1 land angMom_a.x + angMom_b.x + angMom_c.x + angMom_d.x) =1) || ((1 land angMom_a.y + angMom_b.y + angMom_c.y + angMom_d.y) =1) || ((1 land angMom_a.z + angMom_b.z + angMom_c.z + angMom_d.z) =1) ) then raise NullQuartet end; (* Schwartz screening *) if (np+nq> 24) then ( let schwartz_p = let key = Zkey.of_powers (Zkey.Twelve (angMom_a, angMom_b, angMom_a, angMom_b) ) in match schwartz_p with | None -> 1. | Some schwartz_p -> Zmap.find schwartz_p key in if schwartz_p < cutoff then raise NullQuartet; let schwartz_q = let key = Zkey.of_powers (Zkey.Twelve (angMom_c, angMom_d, angMom_c, angMom_d) ) in match schwartz_q with | None -> 1. | Some schwartz_q -> Zmap.find schwartz_q key in if schwartz_p *. schwartz_q < cutoff2 then raise NullQuartet; ); let integral = hvrr_two_e_vector (angMom_a, angMom_b, angMom_c, angMom_d) zero_m_array (expo_b, expo_d) (expo_inv_p, expo_inv_q) (shell_p.ContractedShellPair.center_ab, shell_q.ContractedShellPair.center_ab, center_pq) map_1d map_2d np nq in contracted_class.(i) <- contracted_class.(i) +. integral *. norm.(i) with NullQuartet -> () ) class_indices end; let result = Zmap.create (Array.length contracted_class) in Array.iteri (fun i key -> Zmap.add result key contracted_class.(i)) class_indices; result (** Computes all the two-electron integrals of the contracted shell quartet *) let contracted_class ~zero_m shell_a shell_b shell_c shell_d : float Zmap.t = let shell_p = ContractedShellPair.create ~cutoff shell_a shell_b and shell_q = ContractedShellPair.create ~cutoff shell_c shell_d in contracted_class_shell_pairs ~zero_m shell_p shell_q