open Lacaml.D type t let make ?guess ?(n_states=1) ?(n_iter=10) ?(threshold=1.e-6) diagonal matrix_prod = (* Size of the matrix to diagonalize *) let n = Vec.dim diagonal in let m = (* Number of requested states *) match guess with | Some vectors -> (Mat.dim2 vectors) * n_states | None -> n_states in (* Create guess vectors u, with randomly initialized unknown vectors. *) let random_vectors = let random_vector k = Vec.init n (fun i -> if i 1.e-1 then c else 0. *) ) |> Util.normalize in List.init m (fun i -> random_vector (i+1)) in let pick_new u = Mat.to_col_vecs_list u |> Util.list_pack m |> List.rev |> List.hd in let u_new = match guess with | Some vectors -> Mat.to_col_vecs_list vectors | None -> random_vectors in let rec iteration u u_new w iter = (* u is a list of orthonormal vectors, on which the operator has been applied : w = op.u u_new is a list of vector which will increase the size of the space. *) (* Orthonormalize input vectors u_new *) let u_new_ortho = List.concat [u ; u_new] |> Mat.of_col_vecs_list |> Util.qr_ortho |> pick_new in (* Apply the operator the m last vectors *) let w_new = matrix_prod ( u_new_ortho |> Mat.of_col_vecs_list |> Matrix.dense_of_mat ) |> Matrix.to_mat |> Mat.to_col_vecs_list in (* Data for the next iteration *) let u_next = List.concat [ u ; u_new_ortho ] and w_next = List.concat [ w ; w_new ] in (* Build the small matrix h = *) let m_U = Mat.of_col_vecs_list u_next and m_W = Mat.of_col_vecs_list w_next in let m_h = gemm ~transa:`T m_U m_W in (* Diagonalize h *) let y, lambda = Util.diagonalize_symm m_h in (* Express m lowest eigenvectors of h in the large basis *) let m_new_U = gemm ~n:m m_U y and m_new_W = gemm ~n:m m_W y in (* Compute the residual as proposed new vectors *) let u_proposed = Mat.init_cols n m (fun i k -> (lambda.{k} *. m_new_U.{i,k} -. m_new_W.{i,k}) /. (max (diagonal.{i} -. lambda.{k}) 0.01) ) |> Mat.to_col_vecs_list in let residual_norms = List.map nrm2 u_proposed in let residual_norm = List.fold_left (fun accu i -> max accu i) 0. residual_norms in Printf.printf "%3d %16.10f %16.8e%!\n" iter lambda.{1} residual_norm; if residual_norm > threshold then let u_next, w_next, iter = if iter = n_iter then m_new_U |> pick_new, m_new_W |> pick_new, 0 else u_next, w_next, iter in iteration u_next u_proposed w_next (iter+1) else (m_new_U |> pick_new |> Mat.of_col_vecs_list), lambda in iteration [] u_new [] 1