(** Electron-electron repulsion integrals *) open Util open Constants open Bigarray type t = (float, float32_elt, fortran_layout) Genarray.t (* Input type *) type input_data = { i : int; j : int; shell_pairs : ContractedShellPair.t array array ; schwartz : (float Zmap.t * float) array array; cutoff : float } (* Output type *) type output_integral = (* *) { i1 : int ; (* Function i for electron 1 *) j2 : int ; (* Function j for electron 2 *) k1 : int ; (* Function k for electron 1 *) l2 : int ; (* Function l for electron 2 *) swap : bool ; (* If true, Compute (kl|ij) instead of (ij|kl) *) cls : float Zmap.t; } type output_data = output_integral list (** (00|00)^m : Fundamental electron repulsion integral $ \int \int \phi_p(r1) 1/r_{12} \phi_q(r2) dr_1 dr_2 $ maxm : Maximum total angular momentum expo_pq_inv : $1./p + 1/q$ where $p$ and $q$ are the exponents of $\phi_p$ and $\phi_q$ norm_pq_sq : square of the distance between the centers of $\phi_p$ and $\phi_q$ *) let zero_m ~maxm ~expo_pq_inv ~norm_pq_sq = let exp_pq = 1. /. expo_pq_inv in let t = norm_pq_sq *. exp_pq in let f = two_over_sq_pi *. (sqrt exp_pq) in let result = boys_function ~maxm t in let rec aux accu k = function | 0 -> result.(k) <- result.(k) *. accu | l -> begin result.(k) <- result.(k) *. accu; let new_accu = -. accu *. exp_pq in aux new_accu (k+1) (l-1) end in aux f 0 maxm; result (** Compute all the integrals of a contracted class when shell pairs are not yet available *) let contracted_class shell_a shell_b shell_c shell_d : float Zmap.t = TwoElectronRR.contracted_class ~zero_m shell_a shell_b shell_c shell_d (** Compute all the integrals of a contracted class *) let contracted_class_shell_pairs_vec ?schwartz_p ?schwartz_q shell_p shell_q : float Zmap.t = TwoElectronRRVectorized.contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q (** Compute all the integrals of a contracted class *) let contracted_class_shell_pairs ?schwartz_p ?schwartz_q shell_p shell_q : float Zmap.t = TwoElectronRR.contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q (** Creates the input data structure from the basis set. *) let make_input basis = let shell = Basis.contracted_shells basis in (* Pre-compute all shell pairs *) let shell_pairs = ContractedShellPair.shell_pairs shell in (* Pre-compute diagonal integrals for Schwartz screening *) let t0 = Unix.gettimeofday () in let schwartz = Array.map (fun pair_array -> Array.map (fun pair -> let cls = contracted_class_shell_pairs pair pair in let m = Zmap.fold (fun _ value accu -> max (abs_float value) accu) cls 0. in (cls, m) ) pair_array ) shell_pairs in (* Count number of significant shell pairs. *) let icount = ref 0 in for i=0 to (Array.length shell) - 1 do print_int (Contracted_shell.index shell.(i)) ; print_newline (); for j=0 to i do let schwartz_p, schwartz_p_max = schwartz.(i).(j) in if (schwartz_p_max >= cutoff) then icount := !icount + 1; done; done; Printf.printf "%d shell pairs computed in %f seconds\n" !icount (Unix.gettimeofday () -. t0); List.init (Array.length shell) (fun i -> List.init (i+1) (fun j -> { i ; j ; shell_pairs ; schwartz ; cutoff } ) ) |> List.fold_left List.rev_append [] exception NullIntegral let slave_job { i ; j ; shell_pairs ; schwartz ; cutoff} = let shell_p = shell_pairs.(i).(j) in let schwartz_p, schwartz_p_max = schwartz.(i).(j) in if schwartz_p_max < cutoff then [] else let schwartz_cutoff = cutoff *. cutoff in let sp = shell_p.ContractedShellPair.shell_pairs in let f k l = let schwartz_q, schwartz_q_max = schwartz.(k).(l) in if schwartz_p_max *. schwartz_q_max < schwartz_cutoff then raise NullIntegral; let shell_q = shell_pairs.(k).(l) in let sq = shell_q.ContractedShellPair.shell_pairs in let swap = Array.length sp > Array.length sq in (* Compute all the integrals of the class *) let cls = if swap then if Array.length sp + Array.length sq = 2 then contracted_class_shell_pairs ~schwartz_p:schwartz_q ~schwartz_q:schwartz_p shell_q shell_p else contracted_class_shell_pairs_vec ~schwartz_p:schwartz_q ~schwartz_q:schwartz_p shell_q shell_p else if Array.length sp + Array.length sq = 2 then contracted_class_shell_pairs ~schwartz_p ~schwartz_q shell_p shell_q else contracted_class_shell_pairs_vec ~schwartz_p ~schwartz_q shell_p shell_q in { i1=i ; j2=k ; k1=j ; l2=l ; swap ; cls } in let rec loop accu k l = match k, l with | -1, -1 -> accu | k, -1 -> loop accu (k-1) (k-1) | k, l -> let new_accu = let _, schwartz_q_max = schwartz.(k).(l) in if schwartz_p_max *. schwartz_q_max > schwartz_cutoff then f k l :: accu else accu in loop new_accu k (l-1) in loop [] i i let of_basis basis = let shell = Basis.contracted_shells basis in (* 4D data initialization *) let eri_array = let n = Basis.size basis in Genarray.create Float32 fortran_layout [| n ; n ; n ; n|] in Genarray.fill eri_array 0.; (* Compute ERIs *) let to_int_tuple x = let open Zkey in match to_int_tuple Kind_3 x with | Three x -> x | _ -> assert false in let t0 = Unix.gettimeofday () in let inn = ref 0 in let out = ref 0 in make_input basis |> List.map slave_job |> List.iter (fun output_ij -> List.iter (fun { i1=i ; j2=k ; k1=j ; l2=l ; swap ; cls } -> Array.iteri (fun i_c powers_i -> let i_c = (Contracted_shell.index shell.(i)) + i_c + 1 in let xi = to_int_tuple powers_i in Array.iteri (fun j_c powers_j -> let j_c = (Contracted_shell.index shell.(j)) + j_c + 1 in let xj = to_int_tuple powers_j in Array.iteri (fun k_c powers_k -> let k_c = (Contracted_shell.index shell.(k)) + k_c + 1 in let xk = to_int_tuple powers_k in Array.iteri (fun l_c powers_l -> let l_c = (Contracted_shell.index shell.(l)) + l_c + 1 in let xl = to_int_tuple powers_l in let key = if swap then Zkey.of_int_tuple (Zkey.Twelve (xk,xl,xi,xj)) else Zkey.of_int_tuple (Zkey.Twelve (xi,xj,xk,xl)) in let value = Zmap.find cls key in eri_array.{i_c,k_c,j_c,l_c} <- value; eri_array.{j_c,k_c,i_c,l_c} <- value; eri_array.{i_c,l_c,j_c,k_c} <- value; eri_array.{j_c,l_c,i_c,k_c} <- value; eri_array.{k_c,i_c,l_c,j_c} <- value; eri_array.{k_c,j_c,l_c,i_c} <- value; eri_array.{l_c,i_c,k_c,j_c} <- value; eri_array.{l_c,j_c,k_c,i_c} <- value; if (abs_float value > cutoff) then (inn := !inn + 1; ) else out := !out + 1; ) (Contracted_shell.powers shell.(l)) ) (Contracted_shell.powers shell.(k)) ) (Contracted_shell.powers shell.(j)) ) (Contracted_shell.powers shell.(i)); ) output_ij ); Printf.printf "In: %d Out:%d\n" !inn !out ; Printf.printf "Computed ERIs in %f seconds\n%!" (Unix.gettimeofday () -. t0); eri_array (** Write all integrals to a file with the convention *) let to_file ~filename eri_array = let oc = open_out filename in (* Print ERIs *) for l_c=1 to (Genarray.nth_dim eri_array 3) do for k_c=1 to l_c do for j_c=1 to l_c do for i_c=1 to k_c do let value = eri_array.{i_c,j_c,k_c,l_c} in if (abs_float value > cutoff) then Printf.fprintf oc " %5d %5d %5d %5d%20.15f\n" i_c j_c k_c l_c value; done; done; done; done; close_out oc