open Util (** In chop f g, evaluate g only if f is non zero, and return f *. (g ()) *) let chop f g = if (abs_float f) < cutoff then 0. else f *. (g ()) (** Horizontal and Vertical Recurrence Relations (HVRR) *) let hvrr_one_e m (angMom_a, angMom_b) (totAngMom_a, totAngMom_b) (maxm, zero_m_array) (expo_inv_p) (center_ab, center_pa, center_pc) map = let totAngMom_a = Angular_momentum.to_int totAngMom_a and totAngMom_b = Angular_momentum.to_int totAngMom_b in (** Vertical recurrence relations *) let rec vrr m angMom_a totAngMom_a = if angMom_a.(0) < 0 || angMom_a.(1) < 0 || angMom_a.(2) < 0 then 0. else match totAngMom_a with | 0 -> zero_m_array.(m) | _ -> let key = [| angMom_a.(0)+1; angMom_a.(1)+1; angMom_a.(2)+1; |] |> Zkey.(of_int_array ~kind:Kind_3) in let (found, result) = try (true, Zmap.find map.(m) key) with | Not_found -> (false, let am = [| angMom_a.(0) ; angMom_a.(1) ; angMom_a.(2) |] and amm = [| angMom_a.(0) ; angMom_a.(1) ; angMom_a.(2) |] and xyz = match angMom_a with | [|0;0;_|] -> 2 | [|0;_;_|] -> 1 | _ -> 0 in am.(xyz) <- am.(xyz) - 1; amm.(xyz) <- amm.(xyz) - 2; chop (Coordinate.coord center_pa xyz) (fun () -> vrr m am (totAngMom_a-1)) +. chop (0.5 *. (float_of_int am.(xyz)) *. expo_inv_p) (fun () -> vrr m amm (totAngMom_a-2)) -. chop ((Coordinate.coord center_pc xyz) *. expo_inv_p) (fun () -> vrr (m+1) am (totAngMom_a-1)) -. chop (0.5 *. (float_of_int am.(xyz)) *. expo_inv_p *. expo_inv_p) (fun () -> vrr (m+1) amm (totAngMom_a-2)) in if not found then Zmap.add map.(m) key result; result (** Horizontal recurrence relations *) and hrr angMom_a angMom_b totAngMom_a totAngMom_b = if angMom_b.(0) < 0 || angMom_b.(1) < 0 || angMom_b.(2) < 0 then 0. else match totAngMom_b with | 0 -> vrr 0 angMom_a | _ -> let key = [| angMom_a.(0)+1; angMom_a.(1)+1; angMom_a.(2)+1; angMom_b.(0)+1; angMom_b.(1)+1; angMom_b.(2)+1 |] |> Zkey.(of_int_array ~kind:Kind_6) in let (found, result) = try (true, Zmap.find map.(m) key) with | Not_found -> (false, begin let ap = [| angMom_a.(0) ; angMom_a.(1) ; angMom_a.(2) |] and bm = [| angMom_b.(0) ; angMom_b.(1) ; angMom_b.(2) |] and xyz = match angMom_b with | [|0;0;_|] -> 2 | [|0;_;_|] -> 1 | _ -> 0 in ap.(xyz) <- ap.(xyz) + 1; bm.(xyz) <- bm.(xyz) - 1; hrr ap bm (totAngMom_a+1) (totAngMom_b-1) +. chop (Coordinate.coord center_ab xyz) (fun () -> hrr angMom_a bm totAngMom_a (totAngMom_b-1) ) end) in if not found then Zmap.add map.(m) key result; result in hrr m angMom_a angMom_b angMom_c angMom_d totAngMom_a totAngMom_b totAngMom_c totAngMom_d (** Computes all the one-electron integrals of the contracted shell pair *) let contracted_class_nuc ~zero_m shell_a shell_b shell_c shell_d : float Zmap.t = let shell_p = Shell_pair.create_array shell_a shell_b and maxm = let open Angular_momentum in (to_int @@ Contracted_shell.totAngMom shell_a) + (to_int @@ Contracted_shell.totAngMom shell_b) in (* Pre-computation of integral class indices *) let class_indices = Angular_momentum.zkey_array (Angular_momentum.Doublet Contracted_shell.(totAngMom shell_a, totAngMom shell_b)) in let contracted_class = Array.make (Array.length class_indices) 0.; in () (* Compute all integrals in the shell for each pair of significant shell pairs *) for ab=0 to (Array.length shell_p - 1) do let coef_prod = shell_p.(ab).Shell_pair.coef in (** Screening on thr product of coefficients *) if (abs_float coef_prod) > 1.e-4*.cutoff then begin let expo_pq_inv = shell_p.(ab).Shell_pair.expo_inv in let center_ab = Coordinate.shell_p.(ab).Shell_pair.center_ab in let norm_pq_sq = Coordinate.dot center_pq center_pq in let zero_m_array = zero_m ~maxm ~expo_pq_inv ~norm_pq_sq in match Contracted_shell.(totAngMom shell_a, totAngMom shell_b, totAngMom shell_c, totAngMom shell_d) with | Angular_momentum.(S,S,S,S) -> Array.iteri (fun i key -> let coef_prod = shell_p.(ab).Shell_pair.coef *. shell_q.(cd).Shell_pair.coef in let integral = zero_m_array.(0) in contracted_class.(i) <- contracted_class.(i) +. coef_prod *. integral ) class_indices | _ -> let d = shell_q.(cd).Shell_pair.j in let map = Array.init maxm (fun _ -> Zmap.create (Array.length class_indices)) in (* Compute the integral class from the primitive shell quartet *) Array.iteri (fun i key -> let (angMomA,angMomB,angMomC,angMomD) = let a = Zkey.to_int_array Zkey.Kind_12 key in ( [| a.(0) ; a.(1) ; a.(2) |], [| a.(3) ; a.(4) ; a.(5) |], [| a.(6) ; a.(7) ; a.(8) |], [| a.(9) ; a.(10) ; a.(11) |] ) in let norm = shell_p.(ab).Shell_pair.norm_fun angMomA angMomB *. shell_q.(cd).Shell_pair.norm_fun angMomC angMomD in let integral = chop norm (fun () -> ghvrr 0 (angMomA, angMomB, angMomC, angMomD) (Contracted_shell.totAngMom shell_a, Contracted_shell.totAngMom shell_b, Contracted_shell.totAngMom shell_c, Contracted_shell.totAngMom shell_d) (maxm, zero_m_array) (Contracted_shell.expo shell_b b, Contracted_shell.expo shell_d d) (shell_p.(ab).Shell_pair.expo_inv, shell_q.(cd).Shell_pair.expo_inv) (shell_p.(ab).Shell_pair.center_ab, shell_q.(cd).Shell_pair.center_ab, center_pq) map ) in contracted_class.(i) <- contracted_class.(i) +. coef_prod *. integral ) class_indices end done done; let result = Zmap.create (Array.length contracted_class) in Array.iteri (fun i key -> Zmap.add result key contracted_class.(i)) class_indices; result *)