open Lacaml.D type t let make ?guess ?(n_states=1) ?(n_iter=8) ?(threshold=1.e-7) diagonal matrix_prod = (* Size of the matrix to diagonalize *) let n = Vec.dim diagonal in let m = n_states in (* Create guess vectors u, with unknown vectors initialized to unity. *) let init_vectors m = let init_vector k = Vector.sparse_of_assoc_list n [ (k,1.0) ] in Array.init m (fun i -> init_vector (i+1)) |> Matrix.sparse_of_vector_array |> Matrix.to_mat in let guess = match guess with | Some vectors -> vectors | None -> init_vectors m in let guess = if Mat.dim2 guess = n_states then guess else (Mat.to_col_vecs_list guess) @ (Mat.to_col_vecs_list (init_vectors (m-(Mat.dim2 guess))) ) |> Mat.of_col_vecs_list in let pick_new u = Mat.to_col_vecs_list u |> Util.list_pack m |> List.rev |> List.hd in let u_new = Mat.to_col_vecs_list guess in let rec iteration u u_new w iter macro = (* u is a list of orthonormal vectors, on which the operator has been applied : w = op.u u_new is a list of vectors which will increase the size of the space. *) (* Orthonormalize input vectors u_new *) let u_new_ortho = List.concat [u ; u_new] |> Mat.of_col_vecs_list |> Util.qr_ortho |> pick_new in (* Apply the operator to the m last vectors *) let w_new = matrix_prod ( u_new_ortho |> Mat.of_col_vecs_list |> Matrix.dense_of_mat ) |> Matrix.to_mat |> Mat.to_col_vecs_list in (* Data for the next iteration *) let u_next = List.concat [ u ; u_new_ortho ] and w_next = List.concat [ w ; w_new ] in (* Build the small matrix h = *) let m_U = Mat.of_col_vecs_list u_next and m_W = Mat.of_col_vecs_list w_next in let m_h = gemm ~transa:`T m_U m_W in (* Diagonalize h *) let y, lambda = Util.diagonalize_symm m_h in (* Express m lowest eigenvectors of h in the large basis *) let m_new_U = gemm ~n:m m_U y and m_new_W = gemm ~n:m m_W y in (* Compute the residual as proposed new vectors *) let u_proposed = Mat.init_cols n m (fun i k -> let delta = lambda.{k} -. diagonal.{i} in let delta = if abs_float delta > 1.e-2 then delta else if delta > 0. then 1.e-2 else (-1.e-2) in (lambda.{k} *. m_new_U.{i,k} -. m_new_W.{i,k}) /. delta ) |> Mat.to_col_vecs_list in let residual_norms = List.map nrm2 u_proposed in let residual_norm = List.fold_left (fun accu i -> accu +. i *. i) 0. residual_norms |> sqrt in if Parallel.master then begin Printf.printf "%3d " iter; Vec.iteri (fun i x -> if (i<=m) then Printf.printf "%16.10f " x) lambda; Printf.printf "%16.8e%!\n" residual_norm end; (* Make new vectors sparse *) let u_proposed = Mat.of_col_vecs_list u_proposed in let maxu = lange u_proposed ~norm:`M in let thr = maxu *. 0.00001 in let u_proposed = Mat.map (fun x -> if abs_float x < thr then 0. else x) u_proposed |> Mat.to_col_vecs_list in (* Format.printf "%a@." Matrix.pp_matrix @@ Matrix.dense_of_mat m_new_U; *) if residual_norm > threshold && macro > 0 then let u_next, w_next, iter, macro = if iter = n_iter then m_new_U |> pick_new, m_new_W |> pick_new, 0, (macro-1) else u_next, w_next, (iter+1), macro in (iteration [@tailcall]) u_next u_proposed w_next iter macro else (m_new_U |> pick_new |> Mat.of_col_vecs_list), lambda in iteration [] u_new [] 1 30