(** Type for matrices. The ['a] and ['b] types are labels for the rows and columns. *) type ('a,'b) t val dim1: ('a,'b) t -> int (** First dimension of the matrix *) val dim2: ('a,'b) t -> int (** Second dimension of the matrix *) val make : int -> int -> float -> ('a,'b) t (** Creates a matrix initialized with the given value. *) val make0 : int -> int -> ('a,'b) t (** Creates a zero-initialized matrix. *) val create : int -> int -> ('a,'b) t (** Creates an uninitialized matrix. *) val reshape_inplace : int -> int -> ('a,'b) t -> ('c,'d) t (** Changes the dimensions of the matrix *) val reshape_vec_inplace : int -> int -> ('a*'b) Vector.t -> ('a,'b) t (** Reshapres a vector into a matrix *) val init_cols : int -> int -> (int -> int -> float) -> ('a,'b) t (** Creates an uninitialized matrix. *) val identity: int -> ('a,'b) t (** Creates an identity matrix. *) val of_diag: 'a Vector.t -> ('a,'a) t (** Creates a diagonal matrix. *) val diag: ('a,'a) t -> 'a Vector.t (** Returns the diagonal of a matrix. *) val fill_inplace: ('a,'b) t -> float -> unit (** Fills the matrix with the give value. *) val add_const_diag : float -> ('a,'b) t -> ('a,'b) t (** Adds a constant to the diagonal *) val add_const_diag_inplace : float -> ('a,'b) t -> unit (** Adds a constant to the diagonal *) val add_const_inplace : float -> ('a,'b) t -> unit (** Adds a constant to the diagonal *) val add_const : float -> ('a,'b) t -> ('a,'b) t (** Adds a constant to the diagonal *) val add : ('a,'b) t -> ('a,'b) t -> ('a,'b) t (** Adds two matrices *) val sub : ('a,'b) t -> ('a,'b) t -> ('a,'b) t (** Subtracts two matrices *) val mul : ('a,'b) t -> ('a,'b) t -> ('a,'b) t (** Multiplies two matrices element-wise *) val div : ('a,'b) t -> ('a,'b) t -> ('a,'b) t (** Divides two matrices element-wise *) val amax : ('a,'b) t -> float (** Maximum of the absolute values of the elements of the matrix. *) val add_inplace : c:('a,'b) t -> ('a,'b) t -> ('a,'b) t -> unit (** [add_inplace c a b] : performs [c = a+b] in-place. *) val sub_inplace : c:('a,'b) t -> ('a,'b) t -> ('a,'b) t -> unit (** [sub_inplace c a b] : performs [c = a+b] in-place. *) val mul_inplace : c:('a,'b) t -> ('a,'b) t -> ('a,'b) t -> unit (** [mul_inplace c a b] : performs [c = a*b] element-wise in-place. *) val div_inplace : c:('a,'b) t -> ('a,'b) t -> ('a,'b) t -> unit (** [div_inplace c a b] : performs [c = a/b] element-wise in-place. *) (* val to_bigarray : ('a,'b) t -> (float, Stdlib.Bigarray.float64_elt, Stdlib.Bigarray.fortran_layout) Stdlib.Bigarray.Array2.t (** Converts the matrix into a Bigarray in Fortran layout *) val of_bigarray : (float, Stdlib.Bigarray.float64_elt, Stdlib.Bigarray.fortran_layout) Stdlib.Bigarray.Array2.t -> ('a,'b) t (** Converts a [Bigarray.Array2] in Fortran layout into a matrix *) *) val to_bigarray_inplace : ('a,'b) t -> (float, Stdlib.Bigarray.float64_elt, Stdlib.Bigarray.fortran_layout) Stdlib.Bigarray.Array2.t (** Converts the matrix into a Bigarray in Fortran layout in place*) val of_bigarray_inplace : (float, Stdlib.Bigarray.float64_elt, Stdlib.Bigarray.fortran_layout) Stdlib.Bigarray.Array2.t -> ('a,'b) t (** Converts a [Bigarray.Array2] in Fortran layout into a matrix in place*) val to_col_vecs : ('a,'b) t -> 'a Vector.t array (** Converts the matrix into an array of vectors *) val to_col_vecs_list : ('a,'b) t -> 'a Vector.t list (** Converts the matrix into a list of vectors *) val of_col_vecs : 'a Vector.t array -> ('a,'b) t (** Converts an array of vectors into a matrix *) val of_col_vecs_list : 'a Vector.t list -> ('a,'b) t (** Converts a list of vectors into a matrix *) val to_array : ('a,'b) t -> float array array (** Converts the matrix into an array of arrays *) val of_array : float array array -> ('a,'b) t (** Converts an array of arrays into a matrix *) val copy: ?m:int -> ?n:int -> ?br:int -> ?bc:int -> ?ar:int -> ?ac:int -> ('a,'b) t -> ('a,'b) t (** Copies all or part of a two-dimensional matrix A to a new matrix B *) val copy_inplace: ?m:int -> ?n:int -> ?br:int -> ?bc:int -> b:('a,'b) t -> ?ar:int -> ?ac:int -> ('a,'b) t -> unit (** Copies all or part of a two-dimensional matrix A to an existing matrix B *) (* val col: ('a,'b) t -> int -> 'a Vector.t (** Returns a column of the matrix as a vector *) *) val col_inplace: ('a,'b) t -> int -> 'a Vector.t (** Returns a column of the matrix as a vector *) val detri: ('a,'b) t -> ('a,'b) t (** Takes an upper-triangular matrix, and makes it a symmetric matrix by mirroring the defined triangle along the diagonal. *) val detri_inplace: ('a,'b) t -> unit (** Takes an upper-triangular matrix, and makes it a symmetric matrix by mirroring the defined triangle along the diagonal. *) val as_vec_inplace: ('a,'b) t -> ('a*'b) Vector.t (** Interpret the matrix as a vector (reshape). *) val as_vec: ('a,'b) t -> ('a*'b) Vector.t (** Return a copy of the reshaped matrix into a vector *) val random: ?rnd_state:Random.State.t -> ?from:float -> ?range:float -> int -> int -> ('a,'b) t (** Creates a random matrix, similarly to [Vector.random] *) val map: (float -> float) -> ('a,'b) t -> ('a,'b) t (** Apply the function to all elements of the matrix *) val map_inplace: (float -> float) -> b:('a,'b) t -> ('a,'b) t -> unit (** [map_inplace f b a] : Apply the function to all elements of the matrix [a] and store the results in [b] *) val scale: float -> ('a,'b) t -> ('a,'b) t (** Multiplies the matrix by a constant *) val scale_inplace: float -> ('a,'b) t -> unit (** Multiplies the matrix by a constant *) val scale_cols: ('a,'b) t -> 'b Vector.t -> ('a,'b) t (** Multiplies the matrix by a constant *) val scale_cols_inplace: ('a,'b) t -> 'b Vector.t -> unit (** Multiplies the matrix by a constant *) val sycon: ('a,'b) t -> float (** Returns the condition number of a matrix *) val outer_product : ?alpha:float -> 'a Vector.t -> 'b Vector.t -> ('a,'b) t (** Computes M = %{ $\alpha u.v^t$ %} *) val outer_product_inplace : ('a,'b) t -> ?alpha:float -> 'a Vector.t -> 'b Vector.t -> unit (** Computes M = %{ $\alpha u.v^t$ %} *) val gemv_n_inplace : ?m:int -> ?n:int -> ?beta:float -> 'a Vector.t -> ?alpha:float -> ?ar:int -> ?ac:int -> ('a,'b) t -> 'b Vector.t -> unit (** Performs the Lapack GEMV operation. Default values: [beta=0.] [alpha=1.0]. [gemv ~beta y ~alpha m v]: %{ $Y = \beta Y + \alpha M V$ The vector Y is updated in-place. *) val gemv_t_inplace : ?m:int -> ?n:int -> ?beta:float -> 'b Vector.t -> ?alpha:float -> ?ar:int -> ?ac:int -> ('a,'b) t -> 'a Vector.t -> unit (** Performs the Lapack GEMV operation. Default values: [beta=0.] [alpha=1.0]. [gemv ~beta y ~alpha m v]: %{ $Y = \beta Y + \alpha M^\dagger V$ The vector Y is updated in-place. *) val gemv_n : ?m:int -> ?n:int -> ?beta:float -> ?y:'a Vector.t -> ?alpha:float -> ?ar:int -> ?ac:int -> ('a,'b) t -> 'b Vector.t -> 'a Vector.t (** Performs the Lapack GEMV operation. Default values: [beta=0.] [alpha=1.0]. [gemv ~beta y ~alpha m v]: %{ $Y = \beta Y + \alpha M^\dagger V$ *) val gemv_t : ?m:int -> ?n:int -> ?beta:float -> ?y:'b Vector.t -> ?alpha:float -> ?ar:int -> ?ac:int -> ('a,'b) t -> 'a Vector.t -> 'b Vector.t (** Performs the Lapack GEMV operation. Default values: [beta=0.] [alpha=1.0]. [gemv ~beta y ~alpha m v]: %{ $Y = \beta Y + \alpha M^\dagger V$ *) val gemm_inplace : ?m:int -> ?n:int -> ?k:int -> ?beta:float -> c:('a,'b) t -> ?transa:[`N | `T] -> ?alpha:float -> ('c,'d) t -> ?transb:[`N | `T] -> ('e,'f) t -> unit (** Performs the Lapack GEMM operation. Default values: [beta=0.] [transa=`N] [alpha=1.0] [transb=`N]. [gemm ~beta c ~alpha a b]: %{ $C = \beta C + \alpha A B$ *) val gemm_nn_inplace : ?m:int -> ?n:int -> ?k:int -> ?beta:float -> c:('a,'c) t -> ?alpha:float -> ('a,'b) t -> ('b,'c) t -> unit (** Performs gemm with [~transa=`N] and [~transb=`N]. *) val gemm_nt_inplace : ?m:int -> ?n:int -> ?k:int -> ?beta:float -> c:('a,'c) t -> ?alpha:float -> ('a,'b) t -> ('c,'b) t -> unit (** Performs gemm with [~transa=`N] and [~transb=`T]. *) val gemm_tt_inplace : ?m:int -> ?n:int -> ?k:int -> ?beta:float -> c:('a,'c) t -> ?alpha:float -> ('b,'a) t -> ('c,'b) t -> unit (** Performs gemm with [~transa=`T] and [~transb=`T]. *) val gemm_tn_inplace : ?m:int -> ?n:int -> ?k:int -> ?beta:float -> c:('a,'c) t -> ?alpha:float -> ('b,'a) t -> ('b,'c) t -> unit (** Performs gemm with [~transa=`T] and [~transb=`N]. *) val gemm: ?m:int -> ?n:int -> ?k:int -> ?beta:float -> ?c:('a,'b) t -> ?transa:[`N | `T] -> ?alpha:float -> ('c,'d) t -> ?transb:[`N | `T] -> ('e,'f) t -> ('a,'b) t (** Performs the Lapack GEMM operation. Default values: [beta=0.] [transa=`N] [alpha=1.0] [transb=`N] [gemm ~beta ~alpha a b]: %{ $C = \beta C + \alpha A B$ *) val gemm_nn: ?m:int -> ?n:int -> ?k:int -> ?beta:float -> ?c:('a,'c) t -> ?alpha:float -> ('a,'b) t -> ('b,'c) t -> ('a,'c) t (** Performs gemm with [~transa=`N] and [~transb=`N]. *) val gemm_nt: ?m:int -> ?n:int -> ?k:int -> ?beta:float -> ?c:('a,'c) t -> ?alpha:float -> ('a,'b) t -> ('c,'b) t -> ('a,'c) t (** Performs gemm with [~transa=`N] and [~transb=`T]. *) val gemm_tn: ?m:int -> ?n:int -> ?k:int -> ?beta:float -> ?c:('a,'c) t -> ?alpha:float -> ('b,'a) t -> ('b,'c) t -> ('a,'c) t (** Performs gemm with [~transa=`T] and [~transb=`N]. *) val gemm_tt: ?m:int -> ?n:int -> ?k:int -> ?beta:float -> ?c:('a,'c) t -> ?alpha:float -> ('b,'a) t -> ('c,'b) t -> ('a,'c) t (** Performs gemm with [~transa=`T] and [~transb=`T]. *) val gemm_trace: ?transa:[`N | `T] -> ('a,'b) t -> ?transb:[`N | `T] -> ('c,'d) t -> float (** Computes the trace of a GEMM. Default values: [transa=`N] [transb=`N] [gemm_trace a b]: %{ $C = Tr(A B)$ *) val gemm_nn_trace: ('a,'b) t -> ('b,'c) t -> float (** Computes the trace of a GEMM with [~transa=`N] and [~transb=`N]. *) val gemm_nt_trace: ('a,'b) t -> ('c,'b) t -> float (** Computes the trace of a GEMM with [~transa=`N] and [~transb=`T]. *) val gemm_tn_trace: ('b,'a) t -> ('b,'c) t -> float (** Computes the trace of a GEMM with [~transa=`T] and [~transb=`N]. *) val gemm_tt_trace: ('b,'a) t -> ('c,'b) t -> float (** Computes the trace of a GEMM with [~transa=`T] and [~transb=`T]. *) val svd: ('a,'b) t -> ('a,'b) t * 'b Vector.t * ('b,'b) t (** Singular value decomposition of A(m,n) when m >= n. *) val svd': ('a,'b) t -> ('a,'a) t * 'a Vector.t * ('a,'b) t (** Singular value decomposition of A(m,n) when m < n. *) val qr: ('a,'b) t -> ('a,'b) t * ('b,'b) t (** QR factorization *) val normalize_mat : ('a,'b) t -> ('a,'b) t (** Returns the matrix with all the column vectors normalized *) val normalize_mat_inplace : ('a,'b) t -> unit (** Returns the matrix with all the column vectors normalized *) val diagonalize_symm : ('a,'a) t -> ('a,'a) t * 'a Vector.t (** Diagonalize a symmetric matrix. Returns the eigenvectors and the eigenvalues. *) val xt_o_x : o:('a,'a) t -> x:('a,'b) t -> ('b,'b) t (** Computes {% $\mathbf{X^\dag\, O\, X}$ %} *) val x_o_xt : o:('b,'b) t -> x:('a,'b) t -> ('a,'a) t (** Computes {% $\mathbf{X\, O\, X^\dag}$ %} *) val debug_matrix: string -> ('a,'b) t -> unit (** Prints a matrix in stdout for debug *) val of_file : string -> ('a,'b) t (** Reads a matrix from a file with format "%d %d %f" corresponding to [i, j, A.{i,j}]. *) val relabel : ('a,'b) t -> ('c,'d) t val sym_of_file : string -> ('a,'b) t (** Reads a symmetric matrix from a file with format "%d %d %f" corresponding to [i, j, A.{i,j}]. *) val sysv_inplace : b:('a,'b) t -> ('a,'a) t -> unit (** Solves %{ $AX=B$ %} when A is symmetric, and stores the result in B. *) val sysv : b:('a,'b) t -> ('a,'a) t -> ('a,'b) t (** Solves %{ $AX=B$ %} when A is symmetric *) val (%:) : ('a,'b) t -> (int*int) -> float (** [t%.(i,j)] returns the element at i,j. *) val set : ('a,'b) t -> int -> int -> float -> unit (** [set t i j v] sets the (i,j)-th element to v *) val to_file : filename:string -> ?sym:bool -> ?cutoff:float -> ('a,'b) t -> unit (** Write the matrix to a file. *) val pp : Format.formatter -> ('a,'b) t -> unit