open Common open Linear_algebra module Determinant = Determinant module Spindeterminant = Spindeterminant module Phase = Phase module Excitation = Excitation module Determinant_space = Determinant_space module Spindeterminant_space = Spindeterminant_space module Ci_matrix_element = Ci_matrix_element module Ds = Determinant_space module Sd = Spindeterminant type num_states type t = { e_shift : float ; (* Diagonal energy shift for increasing numerical precision *) det_space : Ds.t ; m_H : (Determinant.t, Determinant.t) Matrix.t lazy_t ; m_S2 : (Determinant.t, Determinant.t) Matrix.t lazy_t ; eigensystem : ((Determinant.t, num_states) Matrix.t * num_states Vector.t) lazy_t; n_states : int; } let det_space t = t.det_space let n_states t = t.n_states let m_H t = Lazy.force t.m_H let m_S2 t = Lazy.force t.m_S2 let eigensystem t = Lazy.force t.eigensystem let mo_class t = Ds.mo_class t.det_space let eigenvectors t = let (x,_) = eigensystem t in x let eigenvalues t = let (_,x) = eigensystem t in x let h_integrals mo_basis = let one_e_ints = Mo.Basis.one_e_ints mo_basis and two_e_ints = Mo.Basis.two_e_ints mo_basis in ( (fun i j _ -> one_e_ints%:(i,j)), (fun i j k l s s' -> if s' <> s then Four_idx_storage.get_phys two_e_ints i j k l else (Four_idx_storage.get_phys two_e_ints i j k l) -. (Four_idx_storage.get_phys two_e_ints i j l k) ), None ) let h_ij mo_basis ki kj = let integrals = List.map (fun f -> f mo_basis) [ h_integrals ] in Ci_matrix_element.make integrals ki kj |> List.hd let h_ij_non_zero mo_basis deg_a deg_b ki kj = let integrals = List.map (fun f -> f mo_basis) [ h_integrals ] in Ci_matrix_element.non_zero integrals deg_a deg_b ki kj |> List.hd let create_matrix_arbitrary f det_space = lazy ( let ndet = Ds.size det_space in let data = match Ds.determinants det_space with | Ds.Arbitrary a -> a | _ -> assert false in let det_alfa = data.Ds.det_alfa and det_beta = data.Ds.det_beta and det = data.Ds.det and index_start = data.Ds.index_start in (* Array of (list of singles, list of doubles) in the beta spin *) let degree_bb = Array.map (fun det_i -> let deg = Sd.excitation_level det_i in let doubles = Array.mapi (fun i det_j -> let d = deg det_j in if d < 3 then Some (i,d,det_j) else None ) det_beta |> Array.to_list |> Util.list_some in let singles = List.filter (fun (_,d,_) -> d < 2) doubles |> List.rev_map (fun (i,_,det_j) -> (i,det_j)) |> List.rev in let doubles = List.rev_map (fun (i,_,det_j) -> (i,det_j)) doubles |> List.rev in (singles, doubles) ) det_beta in let task (i,i_dets) = let shift = index_start.(i) in let result = Array.init (index_start.(i+1) - shift) (fun _ -> []) in (* Update function when ki and kj are connected *) let update i j deg_a deg_b ki kj = let x = f deg_a deg_b ki kj in if abs_float x > Constants.epsilon then result.(i - shift) <- (j, x) :: result.(i - shift) ; in let i_alfa = det_alfa.(i) in let deg_a = Sd.excitation_level i_alfa in Array.iteri (fun j j_dets -> let j_alfa = det_alfa.(j) in let degree_a = deg_a j_alfa in begin match degree_a with | 2 -> Array.iteri (fun i' i_b -> try Array.iteri (fun j' j_b -> if j_b >= i_b then ( if j_b = i_b then ( let i_beta = det_beta.(i_b) in let ki = Determinant.of_spindeterminants i_alfa i_beta in let kj = Determinant.of_spindeterminants j_alfa i_beta in update (index_start.(i) + i') (index_start.(j) + j' + 1) 2 0 ki kj); raise Exit) ) j_dets with Exit -> () ) i_dets | 1 -> Array.iteri (fun i' i_b -> let i_beta = det_beta.(i_b) in let ki = Determinant.of_spindeterminants i_alfa i_beta in let singles, _ = degree_bb.(i_b) in let rec aux singles j' = match singles with | [] -> () | (js, j_beta)::r_singles -> begin match compare js j_dets.(j') with | -1 -> (aux [@tailcall]) r_singles j' | 0 -> let kj = Determinant.of_spindeterminants j_alfa j_beta in (update (index_start.(i) + i') (index_start.(j) + j' + 1) 1 (Determinant.excitation_level_beta ki kj) ki kj; (aux [@tailcall]) r_singles (j'+1);) | 1 -> if (j' < Array.length j_dets) then (aux [@tailcall]) singles (j'+1) | _ -> assert false end in aux singles 0 ) i_dets | 0 -> Array.iteri (fun i' i_b -> let i_beta = det_beta.(i_b) in let ki = Determinant.of_spindeterminants i_alfa i_beta in let _, doubles = degree_bb.(i_b) in let rec aux doubles j' = match doubles with | [] -> () | (js, j_beta)::r_doubles -> begin match compare js j_dets.(j') with | -1 -> (aux [@tailcall]) r_doubles j' | 0 -> let kj = Determinant.of_spindeterminants j_alfa j_beta in (update (index_start.(i) + i') (index_start.(j) + j' + 1) 0 (Determinant.excitation_level_beta ki kj) ki kj; (aux [@tailcall]) r_doubles (j'+1);) | 1 -> if (j' < Array.length j_dets) then (aux [@tailcall]) doubles (j'+1) | _ -> assert false end in aux doubles 0 ) i_dets | _ -> (); end ) det; let r = Array.map (fun l -> let v = Vector.make ndet 0. in List.iter (fun (i, x) -> Vector.set v i x) l; v ) result in (i,r) in let result = Array.init ndet (fun _ -> Vector.make ndet 0.) in let n_det_alfa = Array.length det_alfa in Array.mapi (fun i i_dets -> i, i_dets) det |> Array.map task |> Array.iter (fun (k, r) -> let shift = index_start.(k) in let det_k = det.(k) in Array.iteri (fun j r_j -> result.(shift+det_k.(j)) <- r_j) r; Printf.eprintf "%8d / %8d\r%!" (k+1) n_det_alfa; ) ; Matrix.of_col_vecs result ) (** Create a matrix using the fact that the determinant space is made of the outer product of spindeterminants. *) let create_matrix_spin ?(nmax=2) f det_space = lazy ( let ndet = Ds.size det_space in let a, b = match Ds.determinants det_space with | Ds.Spin (a,b) -> (a,b) | _ -> assert false in let n_beta = Array.length b in (* Array of (list of singles, list of doubles, list of triples) in the beta spin *) let degree_bb = match nmax with | 2 -> begin Array.map (fun det_i -> let deg = Sd.excitation_level det_i in let triples = [] in let doubles = Array.mapi (fun i det_j -> let d = deg det_j in if d < 3 then Some (i,d,det_j) else None ) b |> Array.to_list |> Util.list_some in let singles = List.filter (fun (_,d,_) -> d < 2) doubles |> List.rev_map (fun (i,_,det_j) -> (i,det_j)) |> List.rev in let doubles = List.rev_map (fun (i,_,det_j) -> (i,det_j)) doubles |> List.rev in (singles, doubles, triples) ) b end | 3 -> begin Array.map (fun det_i -> let deg = Sd.excitation_level det_i in let triples = Array.mapi (fun i det_j -> let d = deg det_j in if d < 4 then Some (i,d,det_j) else None ) b |> Array.to_list |> Util.list_some in let doubles = List.filter (fun (_,d,_) -> d < 3) triples in let singles = List.filter (fun (_,d,_) -> d < 2) doubles in let triples = List.rev_map (fun (i,_,det_j) -> (i,det_j)) triples |> List.rev in let doubles = List.rev_map (fun (i,_,det_j) -> (i,det_j)) doubles |> List.rev in let singles = List.rev_map (fun (i,_,det_j) -> (i,det_j)) singles |> List.rev in (singles, doubles, triples) ) b end | _ -> assert false in let a = Array.to_list a and b = Array.to_list b in let task = let result = Array.init n_beta (fun _ -> []) in (* Update function when ki and kj are connected *) let update i j deg_a deg_b ki kj = let x = f deg_a deg_b ki kj in if abs_float x > Constants.epsilon then result.(i) <- (j, x) :: result.(i) ; in fun (i,i_alfa) -> begin match nmax with | 2 -> begin let j = ref 1 in let deg_a = Sd.excitation_level i_alfa in List.iter (fun j_alfa -> let degree_a = deg_a j_alfa in begin match degree_a with | 2 -> let i' = ref 0 in List.iteri (fun ib i_beta -> let ki = Determinant.of_spindeterminants i_alfa i_beta in let kj = Determinant.of_spindeterminants j_alfa i_beta in update !i' (ib + !j) 2 0 ki kj; incr i'; ) b; | 1 -> let i' = ref 0 in List.iteri (fun ib i_beta -> let ki = Determinant.of_spindeterminants i_alfa i_beta in let singles, _doubles, _triples = degree_bb.(ib) in List.iter (fun (j', j_beta) -> let kj = Determinant.of_spindeterminants j_alfa j_beta in update !i' (j' + !j) 1 (Determinant.excitation_level_beta ki kj) ki kj ) singles; incr i'; ) b; | 0 -> let i' = ref 0 in List.iteri (fun ib i_beta -> let ki = Determinant.of_spindeterminants i_alfa i_beta in let _singles, doubles, _triples = degree_bb.(ib) in List.iter (fun (j', j_beta) -> let kj = Determinant.of_spindeterminants j_alfa j_beta in update !i' (j' + !j) 0 (Determinant.excitation_level_beta ki kj) ki kj ) doubles; incr i'; ) b; | _ -> (); end; j := !j + n_beta ) a end | 3 -> begin let j = ref 1 in let deg_a = Sd.excitation_level i_alfa in List.iter (fun j_alfa -> let degree_a = deg_a j_alfa in begin match degree_a with | 3 -> let i' = ref 0 in List.iteri (fun ib i_beta -> let ki = Determinant.of_spindeterminants i_alfa i_beta in let kj = Determinant.of_spindeterminants j_alfa i_beta in update !i' (ib + !j) 3 0 ki kj; incr i'; ) b; | 2 -> let i' = ref 0 in List.iteri (fun ib i_beta -> let ki = Determinant.of_spindeterminants i_alfa i_beta in let singles, _doubles, _triples = degree_bb.(ib) in List.iter (fun (j', j_beta) -> let kj = Determinant.of_spindeterminants j_alfa j_beta in update !i' (j' + !j) 2 (Determinant.excitation_level_beta ki kj) ki kj ) singles; incr i'; ) b; | 1 -> let i' = ref 0 in List.iteri (fun ib i_beta -> let ki = Determinant.of_spindeterminants i_alfa i_beta in let _singles, doubles, _triples = degree_bb.(ib) in List.iter (fun (j', j_beta) -> let kj = Determinant.of_spindeterminants j_alfa j_beta in update !i' (j' + !j) 1 (Determinant.excitation_level_beta ki kj) ki kj ) doubles; incr i'; ) b; | 0 -> let i' = ref 0 in List.iteri (fun ib i_beta -> let ki = Determinant.of_spindeterminants i_alfa i_beta in let _singles, _doubles, triples = degree_bb.(ib) in List.iter (fun (j', j_beta) -> let kj = Determinant.of_spindeterminants j_alfa j_beta in update !i' (j' + !j) 0 (Determinant.excitation_level_beta ki kj) ki kj ) triples; incr i'; ) b; | _ -> (); end; j := !j + n_beta ) a end | _ -> assert false end; let r = Array.map (fun l -> let v = Vector.make ndet 0. in List.iter (fun (i, x) -> Vector.set v i x) l; v ) result in (i,r) in let result = Array.init ndet (fun _ -> Vector.make ndet 0.) in List.mapi (fun i i_alfa -> i*n_beta, i_alfa) a |> Array.of_list |> Array.map task |> Array.iter (fun (k, r) -> Array.iteri (fun j r_j -> result.(k+j) <- r_j) r; Printf.eprintf "%8d / %8d\r%!" (k+Array.length r) ndet; ) ; Matrix.of_col_vecs result ) (** Create a matrix using the fact that the determinant space is made of the outer product of spindeterminants. *) let create_matrix_spin_computed ?(nmax=2) f det_space = lazy ( let ndet = Ds.size det_space in let a, b = match Ds.determinants det_space with | Ds.Spin (a,b) -> (a,b) | _ -> assert false in let n_beta = Array.length b in let h2 i_alfa j_alfa = let deg_a = Sd.excitation_level a.(i_alfa) a.(j_alfa) in match deg_a with | 2 -> let ai, aj = a.(i_alfa), a.(j_alfa) in (fun i_beta j_beta -> if i_beta <> j_beta then 0. else let deg_b = 0 in let ki = Determinant.of_spindeterminants ai b.(i_beta) in let kj = Determinant.of_spindeterminants aj b.(j_beta) in f deg_a deg_b ki kj ) | 1 -> let ai, aj = a.(i_alfa), a.(j_alfa) in (fun i_beta j_beta -> let deg_b = Sd.excitation_level b.(i_beta) b.(j_beta) in match deg_b with | 0 | 1 -> let ki = Determinant.of_spindeterminants ai b.(i_beta) in let kj = Determinant.of_spindeterminants aj b.(j_beta) in f deg_a deg_b ki kj | _ -> 0. ) | 0 -> let ai, aj = a.(i_alfa), a.(j_alfa) in (fun i_beta j_beta -> let deg_b = Sd.excitation_level b.(i_beta) b.(j_beta) in match deg_b with | 0 | 1 | 2 -> let deg_b = Sd.excitation_level b.(i_beta) b.(j_beta) in let ki = Determinant.of_spindeterminants ai b.(i_beta) in let kj = Determinant.of_spindeterminants aj b.(j_beta) in f deg_a deg_b ki kj | _ -> 0. ) | _ -> (fun _ _ -> 0.) in let h3 i_alfa j_alfa = let deg_a = Sd.excitation_level a.(i_alfa) a.(j_alfa) in match deg_a with | 3 -> let ai, aj = a.(i_alfa), a.(j_alfa) in (fun i_beta j_beta -> if i_beta <> j_beta then 0. else let deg_b = 0 in let ki = Determinant.of_spindeterminants ai b.(i_beta) in let kj = Determinant.of_spindeterminants aj b.(j_beta) in f deg_a deg_b ki kj ) | 2 -> let ai, aj = a.(i_alfa), a.(j_alfa) in (fun i_beta j_beta -> let deg_b = Sd.excitation_level b.(i_beta) b.(j_beta) in match deg_b with | 0 | 1 -> let ki = Determinant.of_spindeterminants ai b.(i_beta) in let kj = Determinant.of_spindeterminants aj b.(j_beta) in f deg_a deg_b ki kj | _ -> 0. ) | 1 -> let ai, aj = a.(i_alfa), a.(j_alfa) in (fun i_beta j_beta -> let deg_b = Sd.excitation_level b.(i_beta) b.(j_beta) in match deg_b with | 0 | 1 | 2 -> let deg_b = Sd.excitation_level b.(i_beta) b.(j_beta) in let ki = Determinant.of_spindeterminants ai b.(i_beta) in let kj = Determinant.of_spindeterminants aj b.(j_beta) in f deg_a deg_b ki kj | _ -> 0. ) | 0 -> let ai, aj = a.(i_alfa), a.(j_alfa) in (fun i_beta j_beta -> let deg_b = Sd.excitation_level b.(i_beta) b.(j_beta) in match deg_b with | 0 | 1 | 2 | 3 -> let deg_b = Sd.excitation_level b.(i_beta) b.(j_beta) in let ki = Determinant.of_spindeterminants ai b.(i_beta) in let kj = Determinant.of_spindeterminants aj b.(j_beta) in f deg_a deg_b ki kj | _ -> 0. ) | _ -> (fun _ _ -> 0.) in let i_prev = ref (-10) and result = ref (fun _ -> 0.) in let h123 = ref (fun _ -> 0.) in let h = if nmax = 2 then h2 else h3 in let g i = (* i : index of the i-th determinant. 1 <= i <= ndet i_prev : index of the i-th determinant in the previous function call. 1 <= i_prev <= ndet i_a : index of the i_a-th alpha determinant. 0 <= i_a < n_alfa i_b : index of the i_b-th beta determinant. 0 <= i_b < n_beta j0 : index - 1 of the first determinant with the same alfa component 0 <= j0 < n_beta*(n_alfa-1) j1 : index - 1 of the next determinant with the 1st beta determinant n_beta <= j1 <= ndet j_a : index of the j_a-th alpha determinant. 0 <= j_a < n_alfa j_b : index of the j_b-th beta determinant. 0 <= j_b < n_beta *) if i <> !i_prev then begin i_prev := i; let i_a = (i-1)/n_beta in let h1 = h i_a in let i_b = i - i_a*n_beta - 1 in let j0 = ref (2*ndet) in let j1 = ref (2*ndet) in let j_a = ref 0 in result := fun j -> if (!j0 < j) && (j <= !j1) then () else begin if (!j1 < j) && (j <= !j1 + n_beta) then begin incr j_a; j0 := !j1; end else begin j_a := (j-1)/n_beta; j0 := !j_a * n_beta; end; j1 := !j0 + n_beta; h123 := h1 !j_a i_b; end; let j_b = j - !j0 - 1 in !h123 j_b end; !result in Matrix.init_cols ndet ndet g ) let make ?(n_states=1) ?(algo=`Direct) det_space = let mo_basis = Ds.mo_basis det_space in (* While in a sequential region, initiate the parallel 4-idx transformation to avoid nested parallel jobs *) ignore @@ Mo.Basis.two_e_ints mo_basis; let e_shift = let d0 = Ds.determinant_stream det_space |> Stream.next in h_ij_non_zero mo_basis 0 0 d0 d0 in let m_H = let f = match Ds.determinants det_space with | Ds.Arbitrary _ -> create_matrix_arbitrary | Ds.Spin _ -> if algo = `Direct then create_matrix_spin_computed ~nmax:2 else create_matrix_spin ~nmax:2 in f (fun deg_a deg_b ki kj -> if deg_a + deg_b > 0 then h_ij_non_zero mo_basis deg_a deg_b ki kj else h_ij_non_zero mo_basis 0 0 ki ki -. e_shift ) det_space in let m_S2 = let f = match Ds.determinants det_space with | Ds.Arbitrary _ -> create_matrix_arbitrary | Ds.Spin _ -> create_matrix_spin ~nmax:2 in f (fun _deg_a _deg_b ki kj -> Ci_matrix_element.make_s2 ki kj) det_space in let eigensystem = lazy ( let m_H = Lazy.force m_H in let diagonal = Vector.init (Matrix.dim1 m_H) (fun i -> m_H%:(i,i)) in let matrix_prod psi = Matrix.gemm m_H psi in let eigenvectors, eigenvalues = Davidson.make ~threshold:1.e-6 ~n_states diagonal matrix_prod in let eigenvalues = Vector.map (fun x -> x +. e_shift) eigenvalues in (Conventions.rephase eigenvectors), eigenvalues ) in { det_space ; e_shift ; m_H ; m_S2 ; eigensystem ; n_states } (* let second_order_sum { det_space ; m_H ; m_S2 ; eigensystem ; n_states ; _} list_holes list_particles ?(unique=true) is_internal i_o1_alfa alfa_o2_i w_alfa psi0 = let list_holes = Array.of_list list_holes in let list_particles = Array.of_list list_particles in let psi0 = let stream = Ds.determinant_stream det_space in Array.init (Ds.size det_space) (fun i -> (Stream.next stream), (Matrix.copy_col_ psi0 (i+1)) ) in let symmetric = i_o1_alfa == alfa_o2_i in let det_contribution i = let already_generated = if unique then (fun alfa -> if is_internal alfa then true else let rec aux = function | -1 -> false | j -> Determinant.excitation_level (fst psi0.(j)) alfa <= 2 || aux (j-1) in aux (i-1) ) else is_internal in let psi_filtered_idx = let rec aux accu = function | j when j < i -> List.rev accu | j -> if Determinant.excitation_level (fst psi0.(i)) (fst psi0.(j)) < 4 then aux (j::accu) (j-1) else aux accu (j-1) in aux [] (Array.length psi0 - 1) in let psi_filtered = List.rev_map (fun i -> psi0.(i)) psi_filtered_idx |> List.rev in let psi_h_alfa alfa = List.fold_left (fun accu (det, coef) -> (* Single state here *) accu +. coef.{1} *. (i_o1_alfa det alfa)) 0. psi_filtered in let alfa_h_psi alfa = List.fold_left (fun accu (det, coef) -> (* Single state here *) accu +. coef.{1} *. (alfa_o2_i alfa det)) 0. psi_filtered in let psi_h_alfa_alfa_h_psi alfa = if symmetric then let x = psi_h_alfa alfa in x *. x else (psi_h_alfa alfa) *. (alfa_h_psi alfa) in let det_i = fst psi0.(i) in let w_alfa = w_alfa det_i in let same_spin = List.fold_left (fun accu spin -> accu +. Array.fold_left (fun accu particle -> accu +. Array.fold_left (fun accu hole -> if hole = particle then accu else let alfa = Determinant.single_excitation spin hole particle det_i in if Determinant.is_none alfa then accu else let single = if already_generated alfa then 0. else w_alfa alfa *. psi_h_alfa_alfa_h_psi alfa in let double = Array.fold_left (fun accu particle' -> if particle' >= particle || particle' = hole then accu else accu +. Array.fold_left (fun accu hole' -> if hole' = particle' || hole' = particle || hole' <= hole then accu else let alfa = Determinant.single_excitation spin hole' particle' alfa in if Determinant.is_none alfa || already_generated alfa then accu else accu +. w_alfa alfa *. psi_h_alfa_alfa_h_psi alfa ) 0. list_holes ) 0. list_particles in accu +. single +. double ) 0. list_holes ) 0. list_particles ) 0. [ Spin.Alfa ; Spin.Beta ] in let opposite_spin = Array.fold_left (fun accu particle -> accu +. Array.fold_left (fun accu hole -> if hole = particle then accu else let alfa = Determinant.single_excitation Spin.Alfa hole particle det_i in if Determinant.is_none alfa then accu else let double_ab = Array.fold_left (fun accu particle' -> accu +. Array.fold_left (fun accu hole' -> if hole' = particle' then accu else let alfa = Determinant.double_excitation Spin.Alfa hole particle Spin.Beta hole' particle' det_i in if Determinant.is_none alfa || already_generated alfa then accu else accu +. w_alfa alfa *. psi_h_alfa_alfa_h_psi alfa ) 0. list_holes ) 0. list_particles in accu +. double_ab ) 0. list_holes ) 0. list_particles in same_spin +. opposite_spin in Util.stream_range 0 (Array.length psi0 - 1) |> Farm.run ~ordered:true ~f:det_contribution |> Util.stream_to_list let second_order_sum2 { det_space ; m_H ; m_S2 ; eigensystem ; n_states } list_holes list_particles i_o1_alfa e0 psi0 = let psi0 = let stream = Ds.determinant_stream det_space in Array.init (Ds.size det_space) (fun i -> (Stream.next stream), (Matrix.copy_row psi0 (i+1)) ) in let determinants = Ds.determinants_array det_space |> Array.to_list |> List.concat_map (fun det_i -> [ Spin.Alfa ; Spin.Beta ] |> List.concat_map (fun spin -> List.concat_map (fun particle -> List.map (fun hole -> [ [ Determinant.single_excitation spin hole particle det_i ] ; List.concat_map (fun particle' -> List.map (fun hole' -> Determinant.double_excitation spin hole particle spin hole' particle' det_i ) list_holes ) list_particles ; List.concat_map (fun particle' -> List.map (fun hole' -> Determinant.double_excitation spin hole particle (Spin.other spin) hole' particle' det_i ) list_holes ) list_particles ] |> List.concat ) list_holes ) list_particles ) ) |> List.concat |> List.filter (fun alfa -> not (Determinant.is_none alfa)) |> List.sort_uniq compare in List.fold_left (fun accu alfa -> let alfa_o2 = i_o1_alfa alfa in let a_h_psi = Array.fold_left (fun accu (det,ci) -> ci.{1} *. (alfa_o2 det)) 0. psi0 in accu +. (a_h_psi *. a_h_psi) /. (e0 -. (alfa_o2 alfa)) ) 0. determinants let is_internal det_space = let mo_class = Ds.mo_class det_space in let numbits = Array.length @@ Mo.Class.mo_class_array mo_class in let m l = List.fold_left (fun accu i -> let j = i-1 in Bitstring.logor accu (Bitstring.shift_left_one numbits j) ) (Bitstring.zero numbits) l in let active_mask = m (Mo.Class.active_mos mo_class) in let occ_mask = m (Mo.Class.core_mos mo_class) in let inactive_mask = m (Mo.Class.inactive_mos mo_class) in let occ_mask = Bitstring.logor occ_mask inactive_mask in let neg_active_mask = Bitstring.lognot active_mask in fun a -> let alfa = Determinant.alfa a |> Sd.bitstring in if Bitstring.logand neg_active_mask alfa <> occ_mask then false else let beta = Determinant.beta a |> Sd.bitstring in Bitstring.logand neg_active_mask beta = occ_mask let is_external det_space = let mo_class = Ds.mo_class det_space in let numbits = Array.length @@ Mo.Class.mo_class_array mo_class in let m l = List.fold_left (fun accu i -> let j = i-1 in Bitstring.logor accu (Bitstring.shift_left_one numbits j) ) (Bitstring.zero numbits) l in let inactive_mask = m (Mo.Class.inactive_mos mo_class) in fun a -> let alfa = Determinant.alfa a |> Sd.bitstring in let n_a = Bitstring.(popcount @@ logand inactive_mask alfa) in match n_a with | 0 | 1 | 2 -> let beta = Determinant.beta a |> Sd.bitstring in n_a + Bitstring.(popcount @@ logand inactive_mask beta) < 3 | _ -> false let pt2_en ci = let mo_basis = Ds.mo_basis ci.det_space in let psi0, e0 = ci.eigensystem in let i_o1_alfa = h_ij mo_basis in let w_alfa det_i = let one_e, two_e, _ = h_integrals mo_basis in let fock_diag_alfa, fock_diag_beta = Ds.fock_diag ci.det_space det_i in let h_aa alfa = match Excitation.of_det det_i alfa with | Excitation.Double (_, {hole = h ; particle = p ; spin = s }, {hole = h'; particle = p'; spin = s'}) -> let fock_diag1 = if s = Spin.Alfa then fock_diag_alfa else fock_diag_beta in let fock_diag2 = if s' = Spin.Alfa then fock_diag_alfa else fock_diag_beta in fock_diag1.(0) -. fock_diag1.(h) +. (fock_diag1.(p ) -. two_e h p h p s s) -. (fock_diag2.(h') -. two_e h h' h h' s s' +. two_e p h' p h' s s') +. (fock_diag2.(p') -. two_e h p' h p' s s' +. two_e p p' p p' s s' -. two_e h' p' h' p' s' s') | Excitation.Single (_, {hole = h ; particle = p ; spin = s }) -> let fock_diag = if s = Spin.Alfa then fock_diag_alfa else fock_diag_beta in fock_diag.(0) -. fock_diag.(h) +. (fock_diag.(p) -. two_e h p h p s s) |> ignore; h_ij mo_basis alfa alfa | _ -> e0.{1} -. 1.0 in let e0 = e0.{1} in fun alfa -> 1. /. (e0 -. h_aa alfa) in let mo_class = mo_class ci in let list_holes = List.concat [ Mo.Class.inactive_mos mo_class ; Mo.Class.active_mos mo_class ] and list_particles = List.concat [ Mo.Class.active_mos mo_class ; Mo.Class.virtual_mos mo_class ] in second_order_sum ci list_holes list_particles (is_internal ci.det_space) i_o1_alfa i_o1_alfa w_alfa psi0 |> List.fold_left (+.) 0. let _pt2_en ci = let mo_basis = Ds.mo_basis ci.det_space in let psi0, e0 = ci.eigensystem in let i_o1_alfa = h_ij mo_basis in let mo_class = mo_class ci in let list_holes = List.concat [ Mo.Class.inactive_mos mo_class ; Mo.Class.active_mos mo_class ] and list_particles = List.concat [ Mo.Class.active_mos mo_class ; Mo.Class.virtual_mos mo_class ] in second_order_sum2 ci list_holes list_particles i_o1_alfa e0.{1} psi0 let pt2_mp ci = let mo_basis = Ds.mo_basis ci.det_space in let i_o1_alfa = h_ij mo_basis in let eps = Mo.Basis.mo_energies mo_basis in let w_alfa det_i alfa= match Excitation.of_det det_i alfa with | Excitation.Single (_, { hole ; particle ; spin })-> 1./.(eps.{hole} -. eps.{particle}) | Excitation.Double (_, { hole=h ; particle=p ; spin=s }, { hole=h'; particle=p'; spin=s'})-> 1./.(eps.{h} +. eps.{h'} -. eps.{p} -. eps.{p'}) | _ -> assert false in let mo_class = mo_class ci in let list_holes = List.concat [ Mo.Class.inactive_mos mo_class ; Mo.Class.active_mos mo_class ] and list_particles = List.concat [ Mo.Class.active_mos mo_class ; Mo.Class.virtual_mos mo_class ] in let psi0, _ = ci.eigensystem in second_order_sum ci list_holes list_particles (is_internal ci.det_space) i_o1_alfa i_o1_alfa w_alfa psi0 |> List.fold_left (+.) 0. let variance ci = let mo_basis = Ds.mo_basis ci.det_space in let psi0, _ = ci.eigensystem in let i_o1_alfa = h_ij mo_basis in let w_alfa _ _ = 1. in let mo_class = mo_class ci in let list_holes = List.concat [ Mo.Class.inactive_mos mo_class ; Mo.Class.active_mos mo_class ] and list_particles = List.concat [ Mo.Class.active_mos mo_class ; Mo.Class.virtual_mos mo_class ] in second_order_sum ci list_holes list_particles (is_internal ci.det_space) i_o1_alfa i_o1_alfa w_alfa psi0 |> List.fold_left (+.) 0. let pt2_en_reference ci = let mo_basis = Ds.mo_basis ci.det_space in let psi0, e0 = ci.eigensystem in let aux_basis = mo_basis in let ds = Ds.fci_of_mo_basis ~frozen_core:false aux_basis in let det_stream = let e = let f = is_external ci.det_space in function | None -> false | Some d -> f d in let stream = Ds.determinant_stream ds in let rec next i = let det = try Some (Stream.next stream) with Stream.Failure -> None in if det = None then None else if e det then det else (next [@tailcall]) i in Stream.from next in let out_dets = det_stream |> stream_to_list |> Array.of_list in let in_dets = Ds.determinants_array ci.det_space in let m_H_aux = let h_aa = Array.map (fun ki -> h_ij aux_basis ki ki) out_dets in Array.map (fun ki -> Array.mapi (fun j kj -> (h_ij aux_basis ki kj) /. (e0.{1} -. h_aa.(j)) ) out_dets ) in_dets |> Matrix.of_array in let m_F_aux = Array.map (fun ki -> Array.map (fun kj -> h_ij aux_basis ki kj ) out_dets ) in_dets |> Matrix.of_array in let m_HF = gemm m_H_aux m_F_aux ~transb:`T in (gemm ~transa:`T psi0 @@ gemm m_HF psi0).{1,1} *)